CN104357784A - Method for preparing thick nickel coating on surface of semiconductor material - Google Patents
Method for preparing thick nickel coating on surface of semiconductor material Download PDFInfo
- Publication number
- CN104357784A CN104357784A CN201410689817.4A CN201410689817A CN104357784A CN 104357784 A CN104357784 A CN 104357784A CN 201410689817 A CN201410689817 A CN 201410689817A CN 104357784 A CN104357784 A CN 104357784A
- Authority
- CN
- China
- Prior art keywords
- coating
- nickel
- semiconductor material
- nickel coating
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 71
- 238000000576 coating method Methods 0.000 title claims abstract description 39
- 239000011248 coating agent Substances 0.000 title claims abstract description 38
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 34
- 239000000463 material Substances 0.000 title claims abstract description 27
- 239000004065 semiconductor Substances 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims abstract description 11
- 239000007921 spray Substances 0.000 claims abstract description 16
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 9
- 230000008021 deposition Effects 0.000 claims abstract description 6
- 229910052593 corundum Inorganic materials 0.000 claims abstract description 5
- 239000010431 corundum Substances 0.000 claims abstract description 5
- 239000000843 powder Substances 0.000 claims abstract description 5
- 229910052786 argon Inorganic materials 0.000 claims abstract description 4
- 239000001257 hydrogen Substances 0.000 claims abstract description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims abstract 2
- 238000005238 degreasing Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 3
- 229910052845 zircon Inorganic materials 0.000 claims 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims 1
- 238000005507 spraying Methods 0.000 abstract description 8
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052726 zirconium Inorganic materials 0.000 abstract description 4
- 238000007664 blowing Methods 0.000 abstract description 2
- 239000002245 particle Substances 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract description 2
- 239000004576 sand Substances 0.000 abstract description 2
- 238000007747 plating Methods 0.000 description 5
- 238000005422 blasting Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000007585 pull-off test Methods 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 238000005488 sandblasting Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229910002899 Bi2Te3 Inorganic materials 0.000 description 1
- 229910001096 P alloy Inorganic materials 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- OFNHPGDEEMZPFG-UHFFFAOYSA-N phosphanylidynenickel Chemical compound [P].[Ni] OFNHPGDEEMZPFG-UHFFFAOYSA-N 0.000 description 1
- 235000021110 pickles Nutrition 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- PDYNJNLVKADULO-UHFFFAOYSA-N tellanylidenebismuth Chemical compound [Bi]=[Te] PDYNJNLVKADULO-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/08—Metallic material containing only metal elements
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
一种在半导体材料表面制备厚镍涂层的方法。其特征在于将N型或P型Bi2Te3材料脱脂除油后;用46#锆刚玉,吹砂压力0.1~0.2MPa,喷距150~200mm,角度45~80°吹砂;采用等离子喷枪电流500~700A,氢气5~7L/min,氩气40~60L/min;喷涂粉末为纯度≥99%的工业纯镍粉,粒度-45+15μm,送粉速率80~120g/min;喷距150~180mm,走枪速度800~2000mm/s,每遍沉积10~20μm,得到涂层总厚度20~80μm的镍涂层。本发明的方法可在半导体材料表面获得厚度大于20μm以上的厚镍涂层,涂层沉积效率高、速度快,厚度均匀,对喷涂原料要求不高,涂层与半导体材料的结合力优良。
A method for preparing a thick nickel coating on the surface of a semiconductor material. It is characterized in that the N-type or P-type Bi 2 Te 3 material is degreased and degreased; 46# zirconium corundum is used, the sand blowing pressure is 0.1-0.2MPa, the spray distance is 150-200mm, and the angle is 45-80°; the plasma spray gun is used Current 500-700A, hydrogen 5-7L/min, argon 40-60L/min; spraying powder is industrial pure nickel powder with a purity ≥ 99%, particle size -45+15μm, powder feeding rate 80-120g/min; spray distance 150-180mm, gun speed 800-2000mm/s, deposition 10-20μm per pass, to obtain a nickel coating with a total coating thickness of 20-80μm. The method of the invention can obtain a thick nickel coating with a thickness greater than 20 μm on the surface of the semiconductor material. The coating deposition efficiency is high, the speed is fast, the thickness is uniform, the requirement for spraying raw materials is not high, and the bonding force between the coating and the semiconductor material is excellent.
Description
技术领域 technical field
本发明涉及一种半导体制冷晶片的厚镍涂层制备方法,属于材料表面处理技术领域。 The invention relates to a method for preparing a thick nickel coating on a semiconductor refrigeration chip, and belongs to the technical field of material surface treatment.
背景技术 Background technique
碲化铋(Bi2Te3)是一种良好的半导体材料,温差电优质系数为1.6×10-3/K,是目前所发现的室温下最好的热电材料,在热电堆、热传感器、热电制冷片等领域具有广泛的应用价值。但是Bi2Te3不能直接电镀锡合金,需要预先在其表面进行金属化处理。 Bismuth telluride (Bi 2 Te 3 ) is a good semiconductor material with a thermoelectric figure of merit of 1.6×10 -3 /K. It is the best thermoelectric material found at room temperature so far. It is used in thermopiles, thermal sensors, Thermoelectric cooling sheets and other fields have a wide range of application values. However, Bi 2 Te 3 cannot be directly electroplated with tin alloy, and needs to be metallized on its surface in advance.
化学镀或电镀镍是最常用的半导体材料表面金属化处理方法。Bi2Te3晶体镀镍,不仅实现了表面的导电性与可焊性,还能有效阻挡材料内部元素的扩散,如阻挡Cu、Bi、Sn元素的渗透与流失,防止材料内部的电阻和温差变化。一般金属材料,如Cu、Al、不锈钢等,通过电镀或化学镀是容易实现镍镀层的沉积,因为金属基体与镍镀层间是通过原子间的金属键相结合,不仅起镀容易,而且镀层结合力优良。而Bi2Te3本身为半导体材料,脆性大、力学强度低,材料内部的结合力主要为范德华力,若在其表面直接镀镍,根本无法起镀。通常的做法是对Bi2Te3材料预先酸洗侵蚀,以在其表面形成一层空洞层,镍在空洞内沉积后通过钉扎效应实现镀层与Bi2Te3材料的结合。 Electroless nickel plating or nickel plating is the most commonly used metallization method for the surface of semiconductor materials. Nickel plating on Bi 2 Te 3 crystals not only achieves surface conductivity and solderability, but also effectively blocks the diffusion of elements inside the material, such as blocking the penetration and loss of Cu, Bi, and Sn elements, and preventing the resistance and temperature difference inside the material Variety. For general metal materials, such as Cu, Al, stainless steel, etc., it is easy to achieve the deposition of nickel coating by electroplating or electroless plating, because the metal substrate and the nickel coating are combined by interatomic metal bonds, not only easy to start plating, but also the combination of the coating Excellent strength. However, Bi 2 Te 3 itself is a semiconductor material with high brittleness and low mechanical strength. The bonding force inside the material is mainly van der Waals force. If nickel is directly plated on the surface, it cannot be plated at all. The usual practice is to pickle and etch the Bi 2 Te 3 material in advance to form a layer of voids on its surface. After nickel is deposited in the void, the combination of the coating and the Bi 2 Te 3 material is realized through the pinning effect.
行业内认为,镍镀层的厚度一般只有5~10μm,需将镍镀层的厚度提高到20~80μm,这样对产品的性能会更好,所以厚镍指的是获得大于20μm的镍涂层。 The industry believes that the thickness of the nickel coating is generally only 5-10 μm, and the thickness of the nickel coating needs to be increased to 20-80 μm, so that the performance of the product will be better, so thick nickel refers to obtaining a nickel coating larger than 20 μm.
目前的问题是,由于半导体Bi2Te3材料的导电性差,很难镀厚,镀层的结合力也很差。采用一般工艺对Bi2Te3材料电镀镍,当镀层厚度在5μm以下时,镍层附着力良好,超过5μm时,镀层残余应力增大,附着力显著下降,出现镍层的起皮和剥落现象。采用化学镀镍的方法是有可能形成厚镍镀层的,然而化学镀镍层一般镍磷合金层,而非纯镍层,对半导体基材元素扩散退化的阻挡效果不佳。已有研究表明,镍层的厚度增加,可明显改善制冷片的可焊性、制冷效果、使用寿命及安全可靠性,为此亟待寻找在半导体Bi2Te3材料表面制备厚镍涂层的方法。 The current problem is that due to the poor conductivity of the semiconductor Bi 2 Te 3 material, it is difficult to plate thick, and the bonding force of the plated layer is also poor. Electroplate nickel on Bi 2 Te 3 material by general process. When the thickness of the coating is less than 5 μm, the adhesion of the nickel layer is good. When it exceeds 5 μm, the residual stress of the coating increases, the adhesion decreases significantly, and the phenomenon of peeling and peeling of the nickel layer occurs. . It is possible to form a thick nickel coating by using electroless nickel plating. However, the electroless nickel coating is generally a nickel-phosphorus alloy layer rather than a pure nickel layer, which is not effective in blocking the diffusion and degradation of semiconductor substrate elements. Existing studies have shown that increasing the thickness of the nickel layer can significantly improve the solderability, cooling effect, service life and safety and reliability of the refrigerating sheet. Therefore, it is urgent to find a method for preparing a thick nickel coating on the surface of the semiconductor Bi 2 Te 3 material .
发明内容 Contents of the invention
本发明的目的在于开发一种在半导体制冷晶片Bi2Te3材料上制备厚镍涂层方法。本发明采用大气等离子喷涂方法直接在半导体Bi2Te3材料上喷涂镍涂层,具体技术方案如下: The purpose of the invention is to develop a method for preparing thick nickel coating on Bi2Te3 material of semiconductor refrigeration wafer. The present invention adopts the atmospheric plasma spraying method to directly spray the nickel coating on the semiconductor Bi 2 Te 3 material, and the specific technical scheme is as follows:
将N型或P型Bi2Te3材料脱脂除油后;用46#锆刚玉,吹砂压力0.1~0.2MPa,喷距150~200mm,角度45~80°吹砂;采用等离子喷枪电流500~700A,氢气5~7L/min,氩气40~60L/min;喷涂粉末为纯度≥99%的工业纯镍粉,粒度-45+15μm,送粉速率80~120g/min;喷距150~180mm,走枪速度800~2000mm/s,每遍沉积10~20μm,得到涂层总厚度20~80μm的镍涂层。 After degreasing and degreasing the N-type or P-type Bi 2 Te 3 material; use 46# zirconium corundum, sand blowing pressure 0.1-0.2MPa, spray distance 150-200mm, angle 45-80°; use plasma spray gun current 500- 700A, hydrogen 5~7L/min, argon 40~60L/min; spraying powder is industrial pure nickel powder with a purity ≥ 99%, particle size -45+15μm, powder feeding rate 80~120g/min; spray distance 150~180mm , the gun speed is 800-2000mm/s, and each pass deposits 10-20 μm to obtain a nickel coating with a total coating thickness of 20-80 μm.
与电镀镍技术相比,本发明具有以下显著的优点: Compared with electroplating nickel technology, the present invention has the following significant advantages:
1.可在半导体材料表面获得厚度大于20μm以上的厚镍涂层。 1. Thick nickel coatings with a thickness greater than 20 μm can be obtained on the surface of semiconductor materials.
2.涂层与半导体材料的结合力优良,P型半导体表面镍涂层的结合强度大于>15MPa,N型半导体表面涂层的结合强度>23MPa。 2. The bonding force between the coating and the semiconductor material is excellent, the bonding strength of the nickel coating on the surface of the P-type semiconductor is greater than > 15 MPa, and the bonding strength of the coating on the surface of the N-type semiconductor is > 23 MPa.
3.涂层沉积效率高、速度快,每遍沉积约10~20μm,厚度均匀,对喷涂原料要求不高。 3. The coating deposition efficiency is high and the speed is fast, each deposition is about 10-20 μm, the thickness is uniform, and the requirements for spraying raw materials are not high.
附图说明 Description of drawings
图1镍涂层的金相截面照片。 Figure 1 Metallographic section photo of nickel coating.
具体实施方式 Detailed ways
下面对本发明的实施例作详细说明,实施例中给出了实施方式和具体操作过程,但本发明的保护范围不限于下述的实施例。 The following is a detailed description of the embodiments of the present invention, in which the implementation mode and specific operation process are given, but the protection scope of the present invention is not limited to the following embodiments.
实施例1 Example 1
P型Bi2Te3单晶材料切割成25.4×25.4×1.52mm方片,脱脂除油后安装于喷涂夹具;用46#锆刚玉,吹砂压力0.2MPa,喷距150mm,角度80°吹砂,吹砂后试样表面粗糙度均匀一致;采用等离子喷枪电流700A,氢气7L/min,氩气60L/min;喷涂粉末为纯度≥99%的工业纯镍粉,粒度-45+15μm,送粉速率120g/min;喷距150 mm,走枪速度1800mm/s,喷涂6遍。 P-type Bi 2 Te 3 single crystal material is cut into 25.4×25.4×1.52mm square pieces, degreased and degreased and installed in the spraying fixture; use 46# zirconium corundum, blasting pressure 0.2MPa, spraying distance 150mm, angle 80° blasting , the surface roughness of the sample after sand blasting is uniform; the current of the plasma spray gun is 700A, the hydrogen gas is 7L/min, and the argon gas is 60L/min; Speed 120g/min; spray distance 150 mm, gun speed 1800mm/s, spray 6 times.
获得的涂层总厚度为65.4μm,百格测试涂层的附着力为1级,拉开法测试涂层结合强度为18.9MPa。 The total thickness of the obtained coating was 65.4 μm, the adhesion of the coating was grade 1 in the Baige test, and the bonding strength of the coating was 18.9 MPa in the pull-off test.
实施例2 Example 2
N型Bi2Te3单晶材料切割成φ25.4×1.52mm圆片,脱脂除油后安装于喷涂夹具;用46#锆刚玉,吹砂压力0.1MPa,喷距180mm,角度45°吹砂,吹砂后试样表面粗糙度均匀一致;采用等离子喷枪电流500A,氢气5L/min,氩气40L/min;喷涂粉末为纯度≥99%的工业纯镍粉,粒度-45+15μm,送粉速率80g/min;喷距180mm,走枪速度800mm/s,喷涂2遍。 N-type Bi 2 Te 3 single crystal material is cut into φ25.4×1.52mm discs, degreased and degreased and then installed on the spraying fixture; use 46# zirconium corundum, blasting pressure 0.1MPa, spraying distance 180mm, angle 45° blasting , the surface roughness of the sample after sand blasting is uniform; the current of the plasma spray gun is 500A, the hydrogen gas is 5L/min, and the argon gas is 40L/min; Speed 80g/min; spray distance 180mm, gun speed 800mm/s, spray 2 times.
获得的涂层总厚度为24.4μm,百格测试涂层的附着力为1级,拉开法测试涂层结合强度为24MPa。 The total thickness of the obtained coating is 24.4 μm, the adhesion of the coating is grade 1 in the Baige test, and the bonding strength of the coating is 24 MPa in the pull-off test.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410689817.4A CN104357784B (en) | 2014-11-26 | 2014-11-26 | Method for preparing thick nickel coating on surface of semiconductor material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410689817.4A CN104357784B (en) | 2014-11-26 | 2014-11-26 | Method for preparing thick nickel coating on surface of semiconductor material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104357784A true CN104357784A (en) | 2015-02-18 |
CN104357784B CN104357784B (en) | 2017-05-10 |
Family
ID=52525089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410689817.4A Active CN104357784B (en) | 2014-11-26 | 2014-11-26 | Method for preparing thick nickel coating on surface of semiconductor material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104357784B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109722619A (en) * | 2019-03-21 | 2019-05-07 | 香河汇文节能科技有限公司 | A kind of semiconductor cooling element surface spraying method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5856210A (en) * | 1995-04-06 | 1999-01-05 | Hi-Z Technology, Inc. | Method for fabricating a thermoelectric module with gapless eggcrate |
US5875098A (en) * | 1995-04-06 | 1999-02-23 | Hi-Z Corporation | Thermoelectric module with gapless eggcrate |
JP2006093329A (en) * | 2004-09-22 | 2006-04-06 | Toshiba Corp | Method for forming electrode of thermoelectric conversion element |
CN101409324A (en) * | 2008-07-24 | 2009-04-15 | 中国科学院上海硅酸盐研究所 | Bismuth-telluride-based thermoelectric electrification device and manufacturing method thereof |
CN101847685A (en) * | 2010-04-16 | 2010-09-29 | 江西纳米克热电电子股份有限公司 | Heat-resistant stable bismuth telluride-based thermoelectric semiconductor generator and preparation method thereof |
CN102965611A (en) * | 2012-12-04 | 2013-03-13 | 广州有色金属研究院 | Method for spraying barium titanate high-dielectric coating by using plasma |
CN103014587A (en) * | 2013-01-11 | 2013-04-03 | 广州有色金属研究院 | Method for thermally spraying molybdenum coating on axial surface of crank shaft |
-
2014
- 2014-11-26 CN CN201410689817.4A patent/CN104357784B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5856210A (en) * | 1995-04-06 | 1999-01-05 | Hi-Z Technology, Inc. | Method for fabricating a thermoelectric module with gapless eggcrate |
US5875098A (en) * | 1995-04-06 | 1999-02-23 | Hi-Z Corporation | Thermoelectric module with gapless eggcrate |
JP2006093329A (en) * | 2004-09-22 | 2006-04-06 | Toshiba Corp | Method for forming electrode of thermoelectric conversion element |
CN101409324A (en) * | 2008-07-24 | 2009-04-15 | 中国科学院上海硅酸盐研究所 | Bismuth-telluride-based thermoelectric electrification device and manufacturing method thereof |
CN101847685A (en) * | 2010-04-16 | 2010-09-29 | 江西纳米克热电电子股份有限公司 | Heat-resistant stable bismuth telluride-based thermoelectric semiconductor generator and preparation method thereof |
CN102965611A (en) * | 2012-12-04 | 2013-03-13 | 广州有色金属研究院 | Method for spraying barium titanate high-dielectric coating by using plasma |
CN103014587A (en) * | 2013-01-11 | 2013-04-03 | 广州有色金属研究院 | Method for thermally spraying molybdenum coating on axial surface of crank shaft |
Non-Patent Citations (1)
Title |
---|
MENG QU,ET AL.: ""On the Role of Bubbles in Metallic Splat Nanopores and Adhesion"", 《JOURNAL OF THERMAL SPRAY TECHNOLOGY》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109722619A (en) * | 2019-03-21 | 2019-05-07 | 香河汇文节能科技有限公司 | A kind of semiconductor cooling element surface spraying method |
Also Published As
Publication number | Publication date |
---|---|
CN104357784B (en) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI526261B (en) | Composite substrate for LED light-emitting element, preparation method thereof and LED light-emitting element | |
CN103733331B (en) | Heat dissipating component for semiconductor element | |
TWI668312B (en) | Radiating parts for semiconductor elements | |
WO2017084132A1 (en) | Composite hard-surface material and preparation method therefor | |
CN102700014A (en) | Diamond micro-powder plated titanium, nickel-phosphorous and nickel composite diamond wire saw as well as preparation method thereof | |
CN106435446A (en) | CYSZ thermal barrier coating prepared through plasma thermal spraying method and preparing method | |
CN106222610A (en) | A kind of nanometer composite hard coating and preparation method thereof | |
CN102154640B (en) | The Method of Improving Bonding Strength of Aluminum Coating | |
CN104480443B (en) | A kind of hard tough nano combined ZrAlCuN coatings and preparation method thereof | |
CN103205667A (en) | Thermal spraying composite coating material for piston ring and preparation method of thermal spraying composite coating material | |
CN105401116A (en) | A kind of preparation method of titanium alloy TiAl3-Al composite coating | |
CN102644102A (en) | Diamond wire saw manufactured by adopting diamond micropowder | |
CN103484830A (en) | Preparation method of thick tungsten coating material and tungsten coating material | |
CN105970147A (en) | Aluminum alloy matrix composite material, preparation method and application | |
CN105734485B (en) | A kind of preparation method of beallon surface recombination wear-resistant coating | |
CN104711506A (en) | Spraying method of high-thickness high-performance coating | |
CN104357784B (en) | Method for preparing thick nickel coating on surface of semiconductor material | |
CN103194712B (en) | A kind of tungsten-copper composite material of high thermal conductivity is as the application of tungsten copper heat-sink and electronic package material | |
CN106232845A (en) | Aluminium gold hard rock system's complex and use its thermal component | |
JP2013245375A (en) | Method for manufacturing flanged target | |
CN108411242A (en) | A kind of thermal barrier coating and preparation method thereof with anti-particle erosion superficial layer | |
CN105368398A (en) | Novel diamond abrasive material for LED sapphire substrate processing and preparation method of novel diamond abrasive material | |
CN104193419A (en) | Preparation method of metallic coating on ceramic surface | |
KR20060037255A (en) | Target / Backing Plate Structure | |
CN104441821A (en) | High-temperature alloy composite nanocrystalline coating and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20180103 Address after: 510651 Changxin Road, Guangzhou, Guangdong, No. 363, No. Patentee after: NEW MATERIALS RESEARCH INSTITUTE OF GUANGDONG PROVINCE Address before: 510651 Changxin Road, Guangzhou, Guangdong, No. 363, No. Patentee before: GUANGDONG RESEARCH INSTITUTE OF INDUSTRIAL TECHNOLOGY (GUANGZHOU RESEARCH INSTITUTE OF NON-FERROUS METALS) |
|
CP01 | Change in the name or title of a patent holder | ||
CP01 | Change in the name or title of a patent holder |
Address after: 510651 Changxin Road, Guangzhou, Guangdong, No. 363, No. Patentee after: Institute of new materials, Guangdong Academy of Sciences Address before: 510651 Changxin Road, Guangzhou, Guangdong, No. 363, No. Patentee before: GUANGDONG INSTITUTE OF NEW MATERIALS |