JP2006093329A - Electrode formation method of thermoelectric transducer - Google Patents
Electrode formation method of thermoelectric transducer Download PDFInfo
- Publication number
- JP2006093329A JP2006093329A JP2004275563A JP2004275563A JP2006093329A JP 2006093329 A JP2006093329 A JP 2006093329A JP 2004275563 A JP2004275563 A JP 2004275563A JP 2004275563 A JP2004275563 A JP 2004275563A JP 2006093329 A JP2006093329 A JP 2006093329A
- Authority
- JP
- Japan
- Prior art keywords
- film
- thermoelectric conversion
- electrode
- metal
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 74
- 230000015572 biosynthetic process Effects 0.000 title claims description 11
- 238000006243 chemical reaction Methods 0.000 claims abstract description 85
- 229910052751 metal Inorganic materials 0.000 claims abstract description 80
- 239000002184 metal Substances 0.000 claims abstract description 80
- 239000000463 material Substances 0.000 claims abstract description 75
- 239000000843 powder Substances 0.000 claims abstract description 48
- 239000002245 particle Substances 0.000 claims abstract description 31
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052802 copper Inorganic materials 0.000 claims abstract description 13
- 239000010949 copper Substances 0.000 claims abstract description 13
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 9
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 6
- 239000010941 cobalt Substances 0.000 claims abstract description 6
- 230000008018 melting Effects 0.000 claims abstract description 6
- 238000002844 melting Methods 0.000 claims abstract description 6
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 238000005507 spraying Methods 0.000 claims description 12
- 230000003746 surface roughness Effects 0.000 claims description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000012159 carrier gas Substances 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 239000011701 zinc Substances 0.000 claims description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 239000003570 air Substances 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 239000011135 tin Substances 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052785 arsenic Inorganic materials 0.000 claims description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052711 selenium Inorganic materials 0.000 claims description 2
- 239000011669 selenium Substances 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910052714 tellurium Inorganic materials 0.000 claims description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 2
- 238000000576 coating method Methods 0.000 abstract description 70
- 239000011248 coating agent Substances 0.000 abstract description 46
- 239000000853 adhesive Substances 0.000 abstract description 2
- 230000001070 adhesive effect Effects 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 239000000758 substrate Substances 0.000 description 17
- 230000003628 erosive effect Effects 0.000 description 9
- 239000007921 spray Substances 0.000 description 9
- 238000005229 chemical vapour deposition Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 238000005240 physical vapour deposition Methods 0.000 description 8
- 238000007751 thermal spraying Methods 0.000 description 6
- 238000007740 vapor deposition Methods 0.000 description 6
- 238000007747 plating Methods 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 229910002665 PbTe Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000007750 plasma spraying Methods 0.000 description 3
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 3
- 238000009841 combustion method Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 230000005679 Peltier effect Effects 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000001182 laser chemical vapour deposition Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000005480 shot peening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 230000005676 thermoelectric effect Effects 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
本発明は、熱電変換材料の表面に金属皮膜または金属を主成分とする電極皮膜をコーティングした熱電変換素子の電極皮膜の形成方法に関する。 The present invention relates to a method for forming an electrode film of a thermoelectric conversion element in which a surface of a thermoelectric conversion material is coated with a metal film or an electrode film containing a metal as a main component.
最近、エネルギーの有効利用手段の一つとして、ゼーベック効果やペルチェ効果などの熱電効果を有する熱電変換モジュールにより、熱エネルギーを電気エネルギーに直接変換するようにしたものがある。 Recently, as one of effective energy utilization means, there is one in which heat energy is directly converted into electric energy by a thermoelectric conversion module having a thermoelectric effect such as Seebeck effect or Peltier effect.
この熱電変換モジュールは、熱電変換材料の表面に金属皮膜又は金属を主成分とする電極皮膜が形成されたP型素子、N型素子と呼ばれる熱電変換素子とこれら両素子を接合する電極とから構成されている。 This thermoelectric conversion module is composed of a thermoelectric conversion element called a P-type element or an N-type element in which a metal film or an electrode film mainly composed of metal is formed on the surface of a thermoelectric conversion material, and an electrode for joining these elements. Has been.
従来、上記熱電変換素子となる熱電変換材料の表面に電極皮膜を形成するには、各種のコーティングプロセスが使用されている(例えば、特許文献1)。これは金属粉末をプラスト装置で吹付けて、各種基材表面に皮膜を形成するものである。 Conventionally, various coating processes are used to form an electrode film on the surface of a thermoelectric conversion material to be the thermoelectric conversion element (for example, Patent Document 1). In this method, metal powder is sprayed with a plast device to form a film on the surface of various substrates.
ところで、金属のコーティング方法としては、溶射法、物理蒸着法(PVD)、化学蒸着法(CVD法)、メッキ法などがある。 By the way, metal coating methods include thermal spraying, physical vapor deposition (PVD), chemical vapor deposition (CVD), and plating.
溶射法は、コーティングする材料を種々の熱源(プラズマ、アーク、ガス炎など)で溶かして、基材表面に吹付けて皮膜を形成する方法であり、電気、電子機器の電極形成、原動機の耐食・耐摩耗コーティング、鉄骨・橋梁などの耐食コーティングなどに幅広く使用されている。 Thermal spraying is a method in which the material to be coated is melted with various heat sources (plasma, arc, gas flame, etc.) and sprayed onto the surface of the substrate to form a coating. It forms electrodes for electric and electronic equipment, and corrosion resistance of motors.・ Widely used for wear-resistant coatings and corrosion-resistant coatings for steel frames and bridges.
物理蒸着法(PVD法)は、真空中でコーティングする材料を種々の方法で蒸発させ、基材表面に蒸着させて皮膜を形成するもので、真空蒸着法、スパッタ蒸着法、モレキュラービーム蒸着法などがあり、光学機器の反射鏡面、工具、半導体実装基板、装飾品など、機能性コーティングとして幅広く使用されている。 The physical vapor deposition method (PVD method) is a method of evaporating a material to be coated in vacuum by various methods and depositing it on the surface of a substrate to form a film, such as a vacuum vapor deposition method, a sputter vapor deposition method, a molecular beam vapor deposition method, etc. It is widely used as a functional coating for reflecting mirror surfaces of optical equipment, tools, semiconductor mounting substrates, ornaments, etc.
化学蒸着法(CVD法)は、高温における化合物の分解又は化合のガス反応により、基材表面に皮膜成分の析出、あるいは基材との反応により皮膜を形成する方法であり、アルミナイシング処理に代表される耐食コーティングや、熱CVD、プラズマCVD、レーザCVDによる太陽電池、工具、半導体実装基板などに幅広く使われている。 The chemical vapor deposition method (CVD method) is a method of forming a film by depositing a film component on the surface of the base material or reacting with the base material by a gas reaction of decomposition or combination of compounds at a high temperature. It is widely used for corrosion-resistant coatings, solar cells, tools, semiconductor mounting substrates by thermal CVD, plasma CVD, and laser CVD.
メッキ法は、電解液中における電気化学的反応により、基材表面に皮膜を形成する方法であり、古くから機械部品の耐食、耐摩耗コーティングとして幅広く使われている。 The plating method is a method of forming a film on the surface of a substrate by an electrochemical reaction in an electrolytic solution, and has been widely used as a corrosion resistant and wear resistant coating for machine parts since ancient times.
従来、金属コーティングの対象となる基材の種類に応じた溶射法、物理蒸着法(PVD法)、化学蒸着法(CVD法)、メッキ法などから、コーティングプロセスが選定されて使われている。
しかしながら、あらゆる種類の基材へのコーティングが可能で、膜質、皮膜の密着性、成膜速度、プロセスの簡便性、環境低負荷などの要求特性を全て満足するプロセスは確立されていないのが現状である。そのため、高品位な皮膜が得られる新プロセスの開発と、生産性の向上に関する開発は継続的に続けられている。 However, it is possible to coat all types of substrates, and there is no established process that satisfies all the required characteristics such as film quality, film adhesion, film formation speed, process simplicity, and low environmental load. It is. Therefore, the development of new processes that can produce high-quality coatings and the development of productivity improvements are continued.
ところで、熱変換材料の電極形成には、従来から使われてきた実績のある溶射法やメッキ法があるが、溶射法は生産性には優れているものの得られる皮膜の導電性が劣るという問題があり、またメッキ法は緻密で導電性に優れた皮膜が得られるが、生産性に劣るという問題がある。 By the way, there is a proven thermal spraying method and plating method for forming electrodes of heat conversion materials, but the thermal spraying method is excellent in productivity but the conductivity of the obtained film is inferior. In addition, the plating method can provide a dense and excellent conductive film, but has a problem of poor productivity.
本発明は、上記の点を考慮してなされたもので、熱電変換材料の表面に緻密で、密着力に優れたコーティング皮膜が形成できると共に、極めて簡便且つ低コストで、しかも環境に優しい熱電変換素子の電極形成方法を提供することを目的とする。 The present invention has been made in consideration of the above points, and can form a dense coating film with excellent adhesion on the surface of the thermoelectric conversion material, and is extremely simple, low cost, and environmentally friendly. An object of the present invention is to provide a method for forming an electrode of an element.
上記課題を解決するため、本発明者らはショットコーティングという革新的なコーティング技術を開発した。従来から、ショットピーニングという固体粒子を材料表面に噴射して、祖面化や硬化させる技術が良く知られている。 In order to solve the above problems, the present inventors have developed an innovative coating technique called shot coating. 2. Description of the Related Art Conventionally, a technique in which solid particles called shot peening are jetted onto a material surface to form or harden the surface is well known.
本発明者らは、200μm以下の軟質金属をプラスチック基材表面に高速噴射すると、初期に基材表面にエロージョンが生じるものの、その後基材表面にサブミクロンから数百μmの皮膜が形成されることを確認した。 When the present inventors spray a soft metal of 200 μm or less onto the surface of a plastic substrate at a high speed, an erosion is initially generated on the surface of the substrate, but then a film of submicron to several hundreds of μm is formed on the surface of the substrate. It was confirmed.
従来の金属コーティング技術は、金属粉末を高温で溶融して吹付ける溶射法や、真空中で金属を蒸発させるPVD法(物理蒸着法)、高温での化合物の分解または化合によるCVD法(化学蒸着法)などが挙げられる。 Conventional metal coating technologies include thermal spraying method in which metal powder is melted and sprayed at high temperature, PVD method (physical vapor deposition method) in which metal is evaporated in vacuum, and CVD method (chemical vapor deposition) by decomposition or combination of compounds at high temperature. Law).
これに対して、ショットコーティングは、常温・大気中の基材表面に金属粉末を高速噴射させることにより金属皮膜を形成するプロセスである。このプロセスでは、緻密で、密着力に優れた金属皮膜が得られると共に、当然のことながら極めて簡便で且つ低コスト、環境に優しいプロセスである。 In contrast, shot coating is a process in which a metal film is formed by spraying metal powder at high speed onto the surface of a substrate at room temperature and in the atmosphere. In this process, a dense metal film having excellent adhesion can be obtained, and of course, it is an extremely simple, low-cost and environmentally friendly process.
本発明においては、熱電変換材料の表面に緻密で密着力の高い電極を形成するコーティング手法を提案し、その中でも熱電変換材料と電極材料の種類、コーティング条件等を限定することにより、高品位な膜質で、密着力の高い金属層を形成した熱電変換素子とその電極形成方法を提供するものである。 In the present invention, a coating method for forming a dense and highly adhesive electrode on the surface of the thermoelectric conversion material is proposed, and among them, by limiting the types of the thermoelectric conversion material and the electrode material, coating conditions, etc., high quality is achieved. The present invention provides a thermoelectric conversion element in which a metal layer having high film quality and high adhesion is formed, and a method for forming the electrode.
請求項1に対応する発明は、熱電変換材料に粒径が0.5〜200μmの金属粉末を常温・大気中で、200〜1000m/sの速度で高速噴射することにより、金属皮膜又は金属を主体とした電極皮膜を形成する。 The invention corresponding to claim 1 is that a metal film or a metal is applied to a thermoelectric conversion material by spraying a metal powder having a particle size of 0.5 to 200 μm at a high speed of 200 to 1000 m / s at room temperature and in the atmosphere. An electrode film mainly formed is formed.
金属粉末を熱電変換材料の端面に高速噴射すると、最初に熱電変換材料の端面にエロージョンが生じるものの、その後熱電変換材料端面に金属皮膜が形成されることを確認した。この皮膜は、エロージョンにより基材表面が粗面化し、金属粉末が塑性変形及び一部が溶融することによって密着し、密着強度の高い皮膜が得られる。また、コーティングする金属粉末は高温に加熱・溶融されていないため、酸化が少なく、気孔率の低い緻密で高品位な皮膜が得られる。 When metal powder was sprayed at high speed onto the end face of the thermoelectric conversion material, it was confirmed that a metal film was formed on the end face of the thermoelectric conversion material after the erosion was initially generated on the end face of the thermoelectric conversion material. The film is roughened by erosion, and the metal powder is brought into close contact by plastic deformation and partial melting, whereby a film having high adhesion strength is obtained. Moreover, since the metal powder to be coated is not heated and melted at a high temperature, a dense and high-quality film with low oxidation and low porosity can be obtained.
請求項2に対応する発明は、請求項1に対応する発明の熱電変換素子の電極形成方法において、前記金属皮膜又は金属を主体とした電極皮膜は、銅より融点の低い金属の粉末を高速噴射して形成される。 The invention corresponding to claim 2 is the thermoelectric conversion element electrode forming method of the invention corresponding to claim 1, wherein the metal film or the electrode film mainly composed of metal is a high-speed jet of metal powder having a melting point lower than that of copper. Formed.
請求項3に対応する発明は、請求項1に対応する発明の熱電変換素子の電極形成方法において、前記金属皮膜又は金属を主体とした電極皮膜は、銅より硬さの低い金属の粉末を高速噴射して形成される。 According to a third aspect of the present invention, in the method for forming an electrode of a thermoelectric conversion element according to the first aspect of the present invention, the metal coating or the metal-based electrode coating is made of a metal powder having a hardness lower than copper at high speed. It is formed by spraying.
請求項4に対応する発明は、請求項1に対応する発明の熱電変換素子の電極形成方法において、前記金属皮膜又は金属を主体とした電極皮膜は、銅よりヤング率の低い金属の粉末を高速噴射して形成される。 The invention corresponding to claim 4 is the method for forming an electrode of a thermoelectric conversion element of the invention corresponding to claim 1, wherein the metal film or the electrode film mainly composed of metal is made of a metal powder having a Young's modulus lower than copper at high speed. It is formed by spraying.
上記請求項2乃至請求項4に対応する発明のような条件を満足する金属粉末を選定することによって、より緻密で高品位な膜質で、密着力の高い電極が得られる。 By selecting a metal powder that satisfies the conditions as in the inventions corresponding to the second to fourth aspects of the invention, a denser, high-quality film quality and an electrode having high adhesion can be obtained.
請求項5に対応する発明は、請求項1に対応する発明の熱電変換素子の電極形成方法において、前記熱電変換材料は、ビスマス、テルル、鉛、シリコン、ゲルマニウム、イリジウム、アンチモン、セレン、コバルト、銅、亜鉛、アルミニウム、砒素、パラジウムを主成分とする化合物からなる群より選ばれた少なくとも1種を含み、前記金属粉末は、ニッケル、鉄、コバルト、アルミニウム、銅、銀、錫、亜鉛、モリブデン、タングステン及びこれらの合金あるいは複合材料からなる群より選ばれた少なくとも1種を含む。 The invention corresponding to claim 5 is the method for forming an electrode of the thermoelectric conversion element of the invention corresponding to claim 1, wherein the thermoelectric conversion material is bismuth, tellurium, lead, silicon, germanium, iridium, antimony, selenium, cobalt, It contains at least one selected from the group consisting of compounds containing copper, zinc, aluminum, arsenic, and palladium as its main component, and the metal powder is nickel, iron, cobalt, aluminum, copper, silver, tin, zinc, molybdenum And at least one selected from the group consisting of tungsten and alloys or composite materials thereof.
上記の組合せの熱電変換材料と金属粉末を選定することによって、より緻密で高品位な膜質で、密着力の高い電極が得られる。 By selecting the thermoelectric conversion material and metal powder in the above combination, an electrode having a denser and higher quality film quality and a higher adhesion can be obtained.
請求項6に対応する発明は、請求項1に対応する発明の熱電変換素子の電極形成方法において、空気、窒素、アルゴン、酸素、ヘリウムからなる群より選ばれた少なくとも1種を含む搬送ガスを用いて前記金属紛末を高速噴射する。 The invention corresponding to claim 6 is the method of forming an electrode of a thermoelectric conversion element of the invention corresponding to claim 1, wherein the carrier gas containing at least one selected from the group consisting of air, nitrogen, argon, oxygen, and helium is used. Used to spray the metal powder at high speed.
搬送ガスは、金属粉末の特性や、皮膜に要求される純度、材料組成を考慮して選択される。 The carrier gas is selected in consideration of the characteristics of the metal powder, the purity required for the coating, and the material composition.
請求項7に対応する発明は、請求項1に対応する発明の熱電変換素子の電極形成方法において、前記熱電変換材料の表面に形成された金属皮膜又は金属を主成分とする皮膜は、気孔率10%以下である。 The invention corresponding to claim 7 is the electrode forming method for a thermoelectric conversion element of the invention corresponding to claim 1, wherein the metal film formed on the surface of the thermoelectric conversion material or the film mainly composed of metal has a porosity. 10% or less.
請求項8に対応する発明は、請求項1に対応する発明の熱電変換素子の電極形成方法において、前記熱電変換材料の表面に形成された金属皮膜又は金属を主成分とする皮膜は、平均表面粗さが200μmRa以下である。 The invention corresponding to claim 8 is the thermoelectric conversion element electrode forming method of the invention corresponding to claim 1, wherein the metal film formed on the surface of the thermoelectric conversion material or the film containing metal as a main component is an average surface. The roughness is 200 μmRa or less.
ショットコーティングにより形成された金属皮膜は、常温・常厚で搬送されるため、酸化等の影響が少なく、気孔や酸化物の含有量の少ない緻密で高品位な皮膜が得られる。 Since the metal film formed by shot coating is transported at normal temperature and normal thickness, it is less affected by oxidation and the like, and a dense and high-quality film with less pores and oxide content can be obtained.
請求項9に対応する発明は、請求項1乃至請求項8に対応する発明の何れかの電極形成方法により、熱電変換材料の表面に電極皮膜が形成された熱電変換素子とする。 The invention corresponding to claim 9 is a thermoelectric conversion element in which an electrode film is formed on the surface of a thermoelectric conversion material by the electrode forming method of any of the inventions corresponding to claims 1 to 8.
本発明による熱電変換素子の電極形成方法は、熱電変換材料と電極用の金属粉末材料の組合せやコーティング条件を限定することにより、緻密で高品位、密着力の高いコーティング皮膜が簡便且つ低コストで得られる。 The electrode forming method of the thermoelectric conversion element according to the present invention is a simple and low-cost coating film having a high density and high adhesion by limiting the combination of the thermoelectric conversion material and the metal powder material for the electrode and the coating conditions. can get.
本発明の実施形態について、以下の実施例及び比較例を参照して具体的に説明する。 Embodiments of the present invention will be specifically described with reference to the following examples and comparative examples.
以下に本発明における第1の実施形態を表1により説明する。 A first embodiment of the present invention will be described below with reference to Table 1.
縦、横、厚さが5×5×5mmの熱電変換材料に、粒径0.5〜200μmのアルミニウム粉末を、室温大気中、200〜1000m/s、ここでは300m/sの噴射速度で吹付けるショットコーティング法を用いて、アルミニウム皮膜を約100μmの膜厚でコーティングした(実施例1)。 An aluminum powder having a particle size of 0.5 to 200 μm is blown into a thermoelectric conversion material having a length, width, and thickness of 5 × 5 × 5 mm at a jet velocity of 200 to 1000 m / s, here 300 m / s, in a room temperature atmosphere. The aluminum film was coated with a film thickness of about 100 μm by using the applied shot coating method (Example 1).
同様に実施例1と同じ熱電変換材料にアルミニウム皮膜を大気中プラズマ溶射法、蒸着法を用いてほぼ同等な膜厚を形成し、比較例1,2とした。 Similarly, an aluminum film was formed on the same thermoelectric conversion material as in Example 1 by using an atmospheric plasma spraying method or a vapor deposition method, and Comparative Examples 1 and 2 were obtained.
実施例1及び比較例1,2について、得られた皮膜の膜質、熱電変換材料と皮膜の密着性、成膜速度、プロセスの簡便性、コスト、耐環境性について評価した結果を表1にまとめた。 Table 1 summarizes the results of evaluation of the film quality of the obtained film, adhesion between the thermoelectric conversion material and the film, film formation speed, process simplicity, cost, and environmental resistance for Example 1 and Comparative Examples 1 and 2. It was.
ショットコーティング法は、大気中のプラズマ溶射法、蒸着法に比べて、得られた皮膜の膜質、基板と皮膜の密着性、成膜速度、プロセスの簡便性、コスト、耐環境性の観点から、優れた特性を示すことが分かる。 Compared to the plasma spraying method and vapor deposition method in the atmosphere, the shot coating method is based on the film quality of the obtained film, adhesion between the substrate and the film, film formation speed, process simplicity, cost, and environmental resistance. It can be seen that it exhibits excellent properties.
これに対して、大気中プラズマ溶射法は、成膜速度が速く、厚膜のものまで形成可能であるが、皮膜中の気孔率が高く、さらに含まれる酸化物の含有量も多い。また、コーティング効率が低く、コスト高となってしまう。 In contrast, the atmospheric plasma spraying method has a high film formation rate and can form a thick film, but has a high porosity in the film and a large oxide content. Also, the coating efficiency is low and the cost is high.
また、真空蒸着法は、高品位な膜質の皮膜が得られるが、成膜速度が遅く、また真空チャンバー内でのバッジ処理となるため、簡便性・コストの面でマイナスとなってしまう。 In addition, the vacuum vapor deposition method can obtain a high-quality film, but the film forming speed is slow and the badge process is performed in the vacuum chamber, which is negative in terms of simplicity and cost.
このように第1の実施形態では、熱電変換材料に粒径が0.5〜200μmの金属粉末を常温・大気中で、200〜1000m/sの速度で高速噴射することにより、金属皮膜又は金属を主体とした電極皮膜を形成したものである。 As described above, in the first embodiment, a metal film or metal is formed by spraying a metal powder having a particle size of 0.5 to 200 μm on a thermoelectric conversion material at a high speed of 200 to 1000 m / s in normal temperature and the atmosphere. An electrode film mainly composed of is formed.
ここで、金属粉末の噴射速度は熱電変換材料の組合せや形成する膜厚により選択されるが、200m/s未満の速度で高速噴射した場合、粉末が基材に衝突したときのエネルギーが小さく、皮膜が形成されない。また、1000m/sを超える速度で皮膜を形成した場合、基材のエロージョン摩耗が大きくなり、安定した膜厚の皮膜が得られにくく、皮膜中の残留応力が高くなり、皮膜の剥離が起こり易いことから、金属粉末の噴射速度として200〜1000m/sの範囲に限定した。 Here, the injection speed of the metal powder is selected depending on the combination of the thermoelectric conversion materials and the film thickness to be formed, but when high-speed injection is performed at a speed of less than 200 m / s, the energy when the powder collides with the substrate is small. A film is not formed. Further, when a film is formed at a speed exceeding 1000 m / s, the erosion wear of the base material is increased, it is difficult to obtain a film having a stable film thickness, the residual stress in the film is increased, and the film is easily peeled off. For this reason, the spraying speed of the metal powder was limited to the range of 200 to 1000 m / s.
また、金属粉末の粒径として0.5μm未満では、高速噴射されたときの衝突エネルギーが小さく、皮膜が形成されない領域が生じる。また、200μmを超える粒径の金属粉末を吹付けると、基材のエロージョン摩耗が大きくなり、安定した膜厚の皮膜が得られにくく、皮膜の形成が困難となる傾向を示すことから、金属粉末の粒径として0.5〜200μmの範囲に限定した。 Moreover, when the particle size of the metal powder is less than 0.5 μm, the collision energy is small when jetted at high speed, and a region where a film is not formed occurs. Further, when metal powder having a particle size exceeding 200 μm is sprayed, the erosion wear of the base material is increased, and it is difficult to obtain a film having a stable film thickness, and it tends to be difficult to form the film. The particle size was limited to the range of 0.5 to 200 μm.
このように熱電変換材料の表面に金属粉末を高速噴射して金属皮膜を形成することで、エロージョンにより基材表面が粗面化し、金属粉末が組成変形及び一部が溶融することによって密着し、密着強度の高い皮膜が得られる。また、コーティングする金属粉末は高温に加熱・溶融されていないため、酸化が少なく、気孔率の低い緻密で高品位な皮膜が得られる。 Thus, by forming a metal film by jetting metal powder at high speed onto the surface of the thermoelectric conversion material, the surface of the base material is roughened by erosion, and the metal powder is in close contact due to compositional deformation and partial melting, A film with high adhesion strength can be obtained. Moreover, since the metal powder to be coated is not heated and melted at a high temperature, a dense and high-quality film with low oxidation and low porosity can be obtained.
次に本発明における第2の実施形態を表2により説明する。 Next, a second embodiment of the present invention will be described with reference to Table 2.
縦、横、厚さが5×5×5mmの熱電変換材料BiTeに、粒径0.5〜200μmのアルミニウム粉末を、室温大気中、200〜1000m/sの噴射速度で吹付けるショットコーティング法を用いてアルミニウム皮膜を約200μmの膜厚でコーティングした(実施例1)。 A shot coating method in which aluminum powder having a particle size of 0.5 to 200 μm is sprayed on a thermoelectric conversion material BiTe having a length, width and thickness of 5 × 5 × 5 mm in a room temperature atmosphere at an injection speed of 200 to 1000 m / s. An aluminum film was coated with a film thickness of about 200 μm (Example 1).
同様に5×5×5mmの熱電変換材料BiTeに、粒径0.5〜200μmの銅粉末を室温大気中、200〜1000m/sの噴射速度で吹付けるショットコーティング法を用いて、銅皮膜を約200μmの膜厚でコーティングした(実施例2)。 Similarly, a copper film is formed on a 5 × 5 × 5 mm thermoelectric conversion material BiTe by using a shot coating method in which a copper powder having a particle diameter of 0.5 to 200 μm is sprayed at a spray speed of 200 to 1000 m / s in a room temperature atmosphere. Coating was performed with a film thickness of about 200 μm (Example 2).
同様に5×5×5mmの熱電変換材料PbTeに粒径0.5〜200μmの銀粉末を室温大気中、200〜1000m/sの噴射速度で吹付けるショットコーティング法を用いて、銀皮膜を約200μmの膜厚でコーティングした(実施例3)。 Similarly, using a shot coating method in which a silver powder having a particle size of 0.5 to 200 μm is sprayed onto a thermoelectric conversion material PbTe of 5 × 5 × 5 mm at room temperature in the air at a spraying speed of 200 to 1000 m / s, a silver film is formed approximately. Coating was performed with a film thickness of 200 μm (Example 3).
同様に5×5×5mmの熱電変換材料PbTeに粒径0.5〜200μmの亜鉛粉末を室温大気中、200〜1000m/sの噴射速度で吹付けるショットコーティング法を用いて、亜鉛皮膜を約200μmの膜厚でコーティングした(実施例4)。 Similarly, using a shot coating method in which a zinc powder having a particle size of 0.5 to 200 μm is sprayed onto a thermoelectric conversion material PbTe of 5 × 5 × 5 mm in a room temperature atmosphere at a spraying speed of 200 to 1000 m / s, a zinc coating is about Coating was performed with a film thickness of 200 μm (Example 4).
同様に5×5×5mmの熱電変換材料SiGeに粒径0.5〜200μmのニッケル粉末を室温大気中、200〜1000m/sの噴射速度で吹付けるショットコーティング法を用いて、ニッケル皮膜を約200μmの膜厚でコーティングした(実施例5)。 Similarly, a nickel coating is applied to a 5 × 5 × 5 mm thermoelectric conversion material SiGe by using a shot coating method in which nickel powder having a particle size of 0.5 to 200 μm is sprayed at a spray speed of 200 to 1000 m / s in a room temperature atmosphere. Coating was performed with a film thickness of 200 μm (Example 5).
同様に5×5×5mmの熱電変換材料PbTeに粒径0.5〜200μmの鉄粉末を室温大気中、200〜1000m/sの噴射速度で吹付けるショットコーティング法を用いて、鉄皮膜を約200μmの膜厚でコーティングした(実施例6)。 Similarly, an iron film is formed on a 5 × 5 × 5 mm thermoelectric conversion material PbTe by using a shot coating method in which an iron powder having a particle size of 0.5 to 200 μm is sprayed at a spray speed of 200 to 1000 m / s in a room temperature atmosphere. Coating was performed with a film thickness of 200 μm (Example 6).
同様に5×5×5mmの熱電変換材料IrSbに粒径0.5〜200μmのコバルト粉末を室温大気中、200〜1000m/sの噴射速度で吹付けるショットコーティング法を用いて、コバルト皮膜を約200μmの膜厚でコーティングした(比較例3)。 Similarly, a cobalt coating is applied to a 5 × 5 × 5 mm thermoelectric conversion material IrSb by using a shot coating method in which a cobalt powder having a particle size of 0.5 to 200 μm is sprayed at a spray rate of 200 to 1000 m / s in a room temperature atmosphere. Coating was performed with a film thickness of 200 μm (Comparative Example 3).
同様に5×5×5mmの熱電変換材料IrSbに粒径0.5〜200μmの錫粉末を室温大気中、200〜1000m/sの噴射速度で吹付けるショットコーティング法を用いて、錫皮膜を約200μmの膜厚でコーティングした(比較例4)。 Similarly, a tin coating is applied to a thermoelectric conversion material IrSb of 5 × 5 × 5 mm using a shot coating method in which a tin powder having a particle size of 0.5 to 200 μm is sprayed at a spray speed of 200 to 1000 m / s in a room temperature atmosphere. Coating was performed with a film thickness of 200 μm (Comparative Example 4).
同様に5×5×5mmの熱電変換材料BiTeに粒径0.5〜200μmのモリブデン粉末を室温大気中、200〜1000m/sの噴射速度で吹付けるショットコーティング法を用いて、モリブデン皮膜を約200μmの膜厚でコーティングした(比較例5)。 Similarly, using a shot coating method in which a molybdenum powder having a particle diameter of 0.5 to 200 μm is sprayed on a thermoelectric conversion material BiTe of 5 × 5 × 5 mm in a room temperature atmosphere at an injection speed of 200 to 1000 m / s, a molybdenum film is formed approximately. Coating was performed with a film thickness of 200 μm (Comparative Example 5).
同様に5×5×5mmの熱電変換材料BiTeに粒径0.5〜200μmのタングステン粉末を室温大気中、200〜1000m/sの噴射速度で吹付けるショットコーティング法を用いて、タングステン皮膜を約200μmの膜厚でコーティングした(比較例6)。 Similarly, a tungsten coating is applied to a 5 × 5 × 5 mm thermoelectric conversion material BiTe using a shot coating method in which a tungsten powder having a particle size of 0.5 to 200 μm is sprayed at a spray speed of 200 to 1000 m / s in a room temperature atmosphere. Coating was performed with a film thickness of 200 μm (Comparative Example 6).
以上のようにして得られたコーティング皮膜の気孔率は、水銀圧入法を用いて測定した。次に熱電変換材料と電極皮膜の密着力を調べるため、電極皮膜に治具を取付けて引張試験を行い、引張強度を測定した。表面粗さは、形成した電極皮膜の表面の平均表面粗さ(Ra)を測定した。金属酸化物の重量割合は、酸素量を燃焼法により求め、金属酸化物としての重量割合を算出したものである。 The porosity of the coating film obtained as described above was measured using a mercury intrusion method. Next, in order to investigate the adhesion between the thermoelectric conversion material and the electrode film, a tensile test was performed by attaching a jig to the electrode film, and the tensile strength was measured. For the surface roughness, the average surface roughness (Ra) of the surface of the formed electrode film was measured. The weight ratio of the metal oxide is obtained by calculating the weight ratio of the metal oxide by obtaining the oxygen amount by a combustion method.
表2に実施例及び比較例のコーティング皮膜の気孔率、熱電変換材料と電極皮膜材料の密着強度、皮膜表面の表面粗さ、皮膜中に含まれる酸化物含有量を示す。銅より融点、あるいは硬さ、あるいはヤング率の低い金属粉末を高速噴射した実施例においては、皮膜中の気孔率が低く、密着強度もバラツキなく安定して高い強度を示し、表面粗さも小さく、酸化物含有量も大幅に少ない皮膜が得られた。 Table 2 shows the porosity of the coating films of Examples and Comparative Examples, the adhesion strength between the thermoelectric conversion material and the electrode film material, the surface roughness of the film surface, and the oxide content contained in the film. In an example in which a metal powder having a melting point, hardness, or Young's modulus lower than that of copper was sprayed at high speed, the porosity in the film was low, the adhesion strength was stable and showed high strength, and the surface roughness was small. A film with significantly less oxide content was obtained.
以上のように上記材料の組合せでは、熱電変換材料上に、高品位な膜質で優れた密着強度の電極皮膜を得ることができる。 As described above, in the combination of the above materials, an electrode film having excellent adhesion strength with high quality film quality can be obtained on the thermoelectric conversion material.
次に本発明における第3の実施形態を説明する。 Next, a third embodiment of the present invention will be described.
前述した第1の実施形態で記載した熱電変換材料の皮膜形成工程において、ショットコーティングにより電極皮膜を熱電変換材料上に形成した。このとき、異なる条件で形成された電極皮膜を持つ複数種類の試験体を作成した。 In the thermoelectric conversion material film forming step described in the first embodiment, an electrode film was formed on the thermoelectric conversion material by shot coating. At this time, a plurality of types of test bodies having electrode films formed under different conditions were prepared.
この場合、具体的には(1)コーティング皮膜材料の粉末粒径、(2)ショットコーティングプロセスにおける粉末の噴射速度、(3)ショットコーティングプロセスにおける金属粉末の搬送ガスという複数の条件を対象に、複数の形成条件によって複数種類の電極皮膜を作製した。 In this case, specifically, (1) the powder particle size of the coating film material, (2) the powder injection speed in the shot coating process, and (3) the metal powder carrier gas in the shot coating process, A plurality of types of electrode films were prepared according to a plurality of formation conditions.
そして、これらの条件対象ごとに、複数種類の電極コーティングに対して、得られた皮膜の膜厚及びバラツキの測定を行った。 And the film thickness and variation of the obtained film | membrane were measured with respect to several types of electrode coating for every these conditions object.
以下に各条件に関して具体的に設定した複数種類の電極皮膜形成条件と、その複数種類の形成条件によって形成された電極皮膜を持つ複数種類の試験体の評価結果について表3及び表4により説明する。 Tables 3 and 4 describe the evaluation results of a plurality of types of test specimens having a plurality of types of electrode coating formation conditions specifically set for each condition and electrode coatings formed according to the plurality of types of formation conditions. .
(1)コーティング皮膜材料の粉末粒径
表3は、電極皮膜材料の粉末粒径を変えて、第1の実施形態と同じ条件でショットコーティングした場合の膜厚を示したものである。ここで用いた粉末の粒径は、粉末をレーザ解析法により求めた50%粒径とした。
(1) Powder particle diameter of coating film material Table 3 shows the film thickness when the powder particle diameter of the electrode film material is changed and shot coating is performed under the same conditions as in the first embodiment. The particle size of the powder used here was 50% particle size obtained by laser analysis.
5×5×5mmの熱電変換材料BiTeに粒径0.2μmと10μmと150μmと250μmのアルミニウム粉末を、室温大気中、200〜1000m/sの噴射速度で、一定時間吹付け、アルミニウム皮膜をショットコーティングし、これを実施例1とした。 A 5 × 5 × 5 mm thermoelectric conversion material BiTe is sprayed with aluminum powder having a particle size of 0.2 μm, 10 μm, 150 μm, and 250 μm in a room temperature atmosphere at an injection speed of 200 to 1000 m / s for a predetermined time, and an aluminum film is shot. This was coated as Example 1.
表3から明らかなように、10μm及び150μmの粒径の金属粉末を高速噴射すると、バラツキの小さい膜厚の皮膜が容易に形成される。これに対して、200μmより大きな粒径の粉末を用いると、基材のエロージョン摩耗が大きくなり、0.5μm未満の粉末では、高速噴射されたときの衝突エネルギーが小さく、皮膜が形成されない領域が生じる。また、200μmを超える粒径の粉末を吹付けると、基板材料のエロージョン摩耗が大きくなり、安定した膜厚の皮膜が得られにくい。 As is apparent from Table 3, when metal powder having a particle size of 10 μm and 150 μm is jetted at a high speed, a film having a small variation in film thickness is easily formed. On the other hand, when a powder having a particle size larger than 200 μm is used, the erosion wear of the base material is increased, and when the powder is less than 0.5 μm, there is a region where a collision energy is small when a high-speed spray is performed and a film is not formed. Arise. When a powder having a particle size exceeding 200 μm is sprayed, the erosion wear of the substrate material increases and it is difficult to obtain a film having a stable film thickness.
表3においては、熱電変換材料BiTeにアルミニウム粉末を高速噴射したときの結果を示したが、その他の材料の組合せを用いた場合も同様な結果が見られた。 In Table 3, although the result when aluminum powder was sprayed at high speed on thermoelectric conversion material BiTe was shown, the same result was seen also when the combination of other materials was used.
以上のように熱電変換材料に金属粉末を高速で吹付けるショットコーティングにおいて、金属粉末の粒径が0.5μm〜200μmの場合、高品位な膜質で、密着性の優れた皮膜が簡便に低コストになし得る。 As described above, in shot coating in which metal powder is sprayed onto a thermoelectric conversion material at high speed, if the particle size of the metal powder is 0.5 μm to 200 μm, a high-quality film quality and excellent adhesion can be easily achieved at low cost. It can be done.
(2)ショットコーティングプロセスにおける粉末の噴射速度
表4に示すように、5×5×5mmの熱電変換材料BiTeに粒径0.5〜200μmのアルミニウム粉末を、室温大気中、50m/sと200m/sと600m/sと1200m/sの噴射速度で、一定時間吹付けるショットコーティングを用いて、アルミニウム皮膜をコーティングした(実施例2)。
(2) Spraying speed of powder in shot coating process As shown in Table 4, an aluminum powder having a particle size of 0.5 to 200 μm is applied to a thermoelectric conversion material BiTe of 5 × 5 × 5 mm in a room temperature atmosphere at 50 m / s and 200 m. An aluminum film was coated using shot coating sprayed for a certain period of time at jetting speeds of / s, 600 m / s and 1200 m / s (Example 2).
表4に示す結果から明らかなように、金属粉末の噴射速度が200m/s及び600m/sの両方とも、安定した膜質の皮膜が形成されるのに対し、1200m/sを超える速度で皮膜を形成した場合、基板材料の表面がエロージョンを起こし、所定膜厚の皮膜が得られにくく、また皮膜中の残留応力が高くなり、剥離が起こり易くなる。 As is apparent from the results shown in Table 4, a stable film quality film is formed at both the metal powder injection speeds of 200 m / s and 600 m / s, whereas the film is formed at a speed exceeding 1200 m / s. When formed, the surface of the substrate material causes erosion, and it is difficult to obtain a film with a predetermined film thickness. Further, the residual stress in the film increases, and peeling easily occurs.
これに対して、50m/s以下の速度で皮膜を形成した場合、速度が遅過ぎるため、粉末が基板材料に衝突したときのエネルギーが小さく、皮膜が形成されていない領域が生じ、その部分では膜厚が不均一となる。また、200〜1000m/sの速度で皮膜を形成した場合、所定膜厚の皮膜が得られ易く、また皮膜中の残留応力が低いため、密着性の高い皮膜が得られる。 On the other hand, when the film is formed at a speed of 50 m / s or less, the speed is too slow, so the energy when the powder collides with the substrate material is small, and there is a region where the film is not formed. The film thickness becomes non-uniform. Moreover, when a film is formed at a speed of 200 to 1000 m / s, a film having a predetermined film thickness is easily obtained, and a film having high adhesion is obtained because the residual stress in the film is low.
次に本発明の第4の実施形態を表5により説明する。 Next, a fourth embodiment of the present invention will be described with reference to Table 5.
前述した第1の実施形態乃至第3の実施形態における熱電変換素子の電極形成工程で、ショットコーティングにより電極皮膜を熱電変換材料上に形成した。このとき、搬送ガスが異なる条件で形成されたコーティング皮膜を持つ複数種類の試験体を作製した。 In the thermoelectric conversion element electrode forming step in the first to third embodiments described above, an electrode film was formed on the thermoelectric conversion material by shot coating. At this time, a plurality of types of test bodies having coating films formed under different conditions of the carrier gas were produced.
このようにして得られた電極皮膜の気孔率は、水銀圧入法を用いて測定した。次に基板材料と皮膜の密着力を調べるため、電極皮膜に治具を取付けて引張試験を行い、引張強度を測定した。表面粗さは、形成した電極皮膜の表面の平均表面粗さ(Ra)を測定した。金属酸化物の重量割合は、酸素量を燃焼法により求め、金属酸化物としての重量割合を算出したものである。 The porosity of the electrode film thus obtained was measured using a mercury intrusion method. Next, in order to examine the adhesion between the substrate material and the film, a jig was attached to the electrode film, a tensile test was performed, and the tensile strength was measured. For the surface roughness, the average surface roughness (Ra) of the surface of the formed electrode film was measured. The weight ratio of the metal oxide is obtained by calculating the weight ratio of the metal oxide by obtaining the oxygen amount by a combustion method.
5×5×5mmの熱電変換材料BiTeに粒径0.5〜200μmのアルミニウム粉末を室温で、空気、窒素、アルゴン、酸素、ヘリウムで搬送し、200〜1000m/sの噴射速度で吹付けてショットコーティングした。搬送ガスを変えても、アルミニウム皮膜の気孔率、密着強度、表面粗さ、酸素含有量に関しては顕著な差は認められなかった。 An aluminum powder having a particle size of 0.5 to 200 μm is conveyed to a thermoelectric conversion material BiTe of 5 × 5 × 5 mm at room temperature with air, nitrogen, argon, oxygen, and helium, and sprayed at an injection speed of 200 to 1000 m / s. Shot coated. Even when the carrier gas was changed, no significant differences were observed with respect to the porosity, adhesion strength, surface roughness, and oxygen content of the aluminum film.
このように本発明の第1の実施形態乃至第4の実施形態において、熱電変換材料と電極皮膜の材料の組合せについて材料特性を限定するか、又は具体的な組合せを示すコーティング条件を規定することにより、高品位な膜質で密着力の高い電極皮膜を形成した熱電変換素子を得ることができる。さらに、上記のように電極皮膜を形成した熱電変換素子では、皮膜が強固に接合でき、要求される特性を十分に引き出せるため、プロセスを簡略化でき、構造も単純化できるため、部品を小型化することができる。 As described above, in the first to fourth embodiments of the present invention, the material characteristics of the combination of the thermoelectric conversion material and the electrode film are limited, or the coating conditions indicating the specific combination are defined. Thus, it is possible to obtain a thermoelectric conversion element in which an electrode film having a high quality film quality and high adhesion is formed. Furthermore, in the thermoelectric conversion element with the electrode film formed as described above, the film can be firmly bonded, and the required characteristics can be sufficiently extracted, so that the process can be simplified and the structure can be simplified. can do.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004275563A JP2006093329A (en) | 2004-09-22 | 2004-09-22 | Electrode formation method of thermoelectric transducer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004275563A JP2006093329A (en) | 2004-09-22 | 2004-09-22 | Electrode formation method of thermoelectric transducer |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006093329A true JP2006093329A (en) | 2006-04-06 |
Family
ID=36234020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004275563A Pending JP2006093329A (en) | 2004-09-22 | 2004-09-22 | Electrode formation method of thermoelectric transducer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006093329A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009191345A (en) * | 2008-02-18 | 2009-08-27 | Toshiba Corp | Dissimilar material composite member, and method for producing the same |
CN104357784A (en) * | 2014-11-26 | 2015-02-18 | 广东省工业技术研究院(广州有色金属研究院) | Method for preparing thick nickel coating on surface of semiconductor material |
JP2017204550A (en) * | 2016-05-11 | 2017-11-16 | 積水化学工業株式会社 | Thermoelectric conversion material, thermoelectric conversion element and method of manufacturing thermoelectric conversion element |
-
2004
- 2004-09-22 JP JP2004275563A patent/JP2006093329A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009191345A (en) * | 2008-02-18 | 2009-08-27 | Toshiba Corp | Dissimilar material composite member, and method for producing the same |
CN104357784A (en) * | 2014-11-26 | 2015-02-18 | 广东省工业技术研究院(广州有色金属研究院) | Method for preparing thick nickel coating on surface of semiconductor material |
JP2017204550A (en) * | 2016-05-11 | 2017-11-16 | 積水化学工業株式会社 | Thermoelectric conversion material, thermoelectric conversion element and method of manufacturing thermoelectric conversion element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5648123A (en) | Process for producing a strong bond between copper layers and ceramic | |
KR100794295B1 (en) | Porous coated member and manufacturing method thereof using cold spray | |
JP5730089B2 (en) | Conductive material, laminate, and method for producing conductive material | |
EP1464720A1 (en) | Thermal spraying powder and method of forming a thermal sprayed coating using the same | |
JP4484105B2 (en) | Molded product comprising metal glass laminate and method for producing the same | |
KR20140054419A (en) | Target assembly and production method therefor | |
JP2002309364A (en) | Low-temperature thermal spray coated member and manufacturing method thereof | |
JP5159359B2 (en) | Method for producing composite material of different materials | |
JP3898082B2 (en) | Method for producing composite metal and composite metal member | |
JP3031719B2 (en) | Diamond film deposition method on electroless plated nickel layer | |
JP2004003022A (en) | Plasma treatment container inside member | |
CN111424229B (en) | Preparation method of composite coating resistant to liquid metal alloy etching | |
JP2006093329A (en) | Electrode formation method of thermoelectric transducer | |
JP4458911B2 (en) | Plastics composite material and manufacturing method thereof | |
IE921106A1 (en) | Coated molybdenum parts and process for their production | |
JP6328550B2 (en) | Tubular target | |
Zhang et al. | Atmospheric plasma sprayed Cu coating on Cu–B/diamond composite for electronic packaging application | |
Thirumalai | Introductory Chapter: The Prominence of Thin Film Science in Technological Scale | |
JP4895561B2 (en) | Metal glass spray coating and method for forming the same | |
JP5221270B2 (en) | Metal parts and manufacturing method thereof | |
JP2011017080A (en) | Composite material having metallic glass spray-coating layer formed on sheet metal substrate and method for manufacturing the same | |
JP2004269951A (en) | Coated member with resistant film to halogen gas, and manufacturing method therefor | |
JP6651438B2 (en) | Copper-gallium sputtering target | |
KR100701193B1 (en) | Fabrication Method of AuSn ductile soldering strips | |
JP2007084901A (en) | Metal glass thin film laminated body |