CN104221193A - 锂电池稳定阳极及其制造方法 - Google Patents
锂电池稳定阳极及其制造方法 Download PDFInfo
- Publication number
- CN104221193A CN104221193A CN201380008421.2A CN201380008421A CN104221193A CN 104221193 A CN104221193 A CN 104221193A CN 201380008421 A CN201380008421 A CN 201380008421A CN 104221193 A CN104221193 A CN 104221193A
- Authority
- CN
- China
- Prior art keywords
- tetrels
- anode
- layer
- lithium battery
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0421—Methods of deposition of the material involving vapour deposition
- H01M4/0423—Physical vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/04—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/387—Tin or alloys based on tin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
公开了一种用于锂电池的阳极,其包括碳体,例如石墨碳,碳体在其电解质接触面上放置有第四族元素或含第四族元素的物质的层。进一步公开了一种阳极,其包括碳体,碳体具有通过第四族元素或含第四族元素的物质的层与电解质材料在电池首次充电期间相互反应而在其上形成的SEI层。
Description
相关申请的交叉引用
本申请要求2012年2月9日提交的美国专利申请13/369,746的优先权,该美国专利申请的内容通过引用并入本文。
发明领域
本发明一般涉及电池,更具体的涉及可充电锂电池。尤其是,本发明涉及用于可充电锂电池系统的稳定碳基阳极。
发明背景
使用锂电池的应用正快速增长。然而,循环寿命问题,循环寿命是电池可能经历的充/放电循环数,以及使用寿命(calendar life)问题,即电池系统工作的时间期间,限制了锂电池在高能应用例如复合和完全电动车辆应用中的使用。在许多情况下,锂电池使用碳基阳极,特别是石墨基阳极;由于这些材料在它们的工作寿命期间的剥落和其他物理分解,这些阳极可能是并入了它们的锂电池的循环寿命和使用寿命降低的重要因素。
为了本公开内容的目的,当指一个电化学电池时,术语“电池组(batteries)”和“电池(cells)”将可交换的使用,虽然术语“电池组(battery)”也可被用来指多个电互连的电池。普通锂电池包括阳极和阴极,阳极和阴极被放置在大量非水性电解质材料内,典型地,非水性电解质材料包括一种或多种锂盐和溶剂,例如有机碳酸酯材料。在多数情况下,阳极和阴极之间插入有隔离材料体。在电池充电期间,锂离子从阴极转移至阳极并且插嵌其中。在电池放电期间,该过程逆转。在电池首次充电期间,阳极表面能够与锂离子和电解质成分反应而形成一层材料,该层材料被称为“固体电解质界面”(SEI)层。应该注意的是,在一些情况下,该SEI层也被称为“固体电解质相间”层。如此形成的SEI材料是电绝缘的但传导锂离子。该反应是可逆的并且消耗电池的一些锂容量。
因为在它们充电期间产生的SEI层可能引起碳表面剥落,出现了与石墨和其他碳基阳极相关的具体问题。这种剥落降低碳体的完整性,从而缩短了它的循环和使用寿命。此外,这样的降低也移除了先前形成的SEI层,这使得在随后的充电循环中需要重新形成,从而消耗锂并进一步降低了电池的充电能力。
应当理解,在碳基阳极上稳定SEI层将大大提高它们的循环和使用寿命。在一些情况下,现有技术已经注意到使用复合材料例如两相材料、涂覆颗粒、纳米级复合材料、三维微结构和类似物等,试图去稳定碳基阳极材料。这样的方法实施复杂并且昂贵,并且商业成功有限。
考虑到稳定碳基阳极的问题,现有技术也研究了替代的非碳基阳极结构。例如,硅能够插嵌大量的锂,然而这样做时体积经历非常大的变化,这将导致阳极结构的粉碎和分解。本领域已通过利用包含缓冲材料的复合和/或多相结构适应这些体积变化。这些结构难以实施,同时也降低能够被插嵌的锂的量。在另一个方法中,硅薄膜被提出作为锂电池电极的活性成分。虽然硅薄膜不易于粉碎,但硅薄膜含的硅的实际量非常小,因此它们的每单位面积充电量相应地小。因此,本领域仍然在用心寻找用于稳定碳基阳极的表面(和相关的SEI层)的方法和材料。
在下文将详细解释,本发明提供了用于稳定锂电池的碳基,特别是石墨基阳极的方法及结构。本发明的方法和材料可以利用成熟的、大容量薄膜沉积技术实施,以便生产具有SEI层的阳极结构,该SEI层不仅被稳定,而且被优化以便提供最大的性能。通过下面的附图、说明和讨论,本发明的这些和其他优点将明显。
发明简述
公开了用于锂电池的阳极,其包括碳体,例如石墨和类似物。阳极进一步包括第四族元素或含第四族元素的物质的层,该层被放置在碳体的电解质接触面上。在电池首次充电期间,这个第四族元素或含第四族元素的物质的层参与SEI层的形成,并且如此产生的层稳定下面的碳,抵抗物理分解。
在具体情况下,第四族元素或含第四族元素的物质可通过利用薄膜技术沉积,或者通过辉光放电化学沉积,或者通过DC或RF溅射方法物理沉积。第四族元素或含第四族元素的物质可以是无定形的、纳米晶或多晶。典型地,第四族元素或含第四族元素的物质的层的厚度在100-1500埃的范围内。在一些具体的情况下,第四族元素是硅。
进一步公开了利用本发明制造阳极和锂电池的方法。在这一点,第四族元素或含第四族元素的物质体被放置在阳极的碳部分上,然后该阳极被并入具有阴极和电解质的锂电池组电池中。该电池在首次充电模式下工作以便使锂离子插嵌入碳内,并且这种充电使得上面放置有第四族元素或含第四族元素的物质的阳极的电化学活性表面与电解质和锂离子反应,以形成本发明的SEI层。
附图简述
图1是处于制造后初始状态的本发明阳极结构的横截面视图;和
图2是形成SEI层后的图1阳极结构的部分的放大横截面视图。
优选实施方式详述
根据本发明,用于锂电池的碳基阳极材料通过在其电解质接触面上沉积第四族元素或含第四族元素的物质如硅合金材料的相对薄层被稳定。该第四族元素或含第四族元素的物质层起到限制碳表面剥落的作用并进一步用于在电池首次充电期间在碳表面上形成改进的、稳定的SEI层。因此,包含第四族元素或含第四族元素的物质的层提高了阳极和因此并入该阳极的电池的循环和使用寿命。现参照图1,示出了本发明的典型的阳极结构10。该阳极由碳体12组成,在具体的情况,碳体12可包括石墨碳,然而应该理解在本发明的实践中,碳的其他类型例如无定形碳和类似物也可被采用。该碳12可以是单片石墨的形式或类似形式,或者也可由粘结剂连结在一起的粒状碳组成,如本技术领域众所周知的。在一些情况下,碳体12可由粘结剂连结在一起的介孔碳微球(MCMB)组成。如在本技术领域众所周知的,典型地,碳体12被支撑在导电电极材料体14上,电极材料体14可包括片、网或类似的形式的金属体。
碳体12上面放置的是第四族元素或含第四族元素的物质的薄层18。当该阳极结构10被并入锂电池时,该层18至少覆盖碳体12的将与电解质接触的表面。值得注意的是,该层18覆盖整体碳体12的至少一部分表面,覆盖不必是完整的。因此,该结构区别于现有技术的复合结构——其中各涂层被置于各个颗粒上,其然后被压缩成为整体电极材料。
第四族元素或含第四族元素的物质层18相对薄,在一些具体情况下,该层的厚度在100至1500埃的范围内。如本技术领域众所周知,碳材料体12比该层18厚很多,典型地,厚度在500至1000微米的范围内。为了图解的目的,应该注意,层18的厚度被夸大。
第四族元素或含第四族元素的物质18典型地以元素形式或作为物质例如合金、混合物或化合物存在。如本技术领域所熟知,这样的物质可通过各种薄膜技术被沉积。一种具体的技术是辉光放电沉积,在本技术领域也被称为等离子体增强化学气相沉积(PECVD)。在这种类型的方法中,层18将被沉积在上面的基底——在该情况中是碳体12——被放置在维持一定气体压力的沉积室内。包括第四族元素的气态化合物和其他组分的工艺气被引入该室内,并被电能激发,电能可包括射频能、VHF能或微波。该电能分解工艺气,使得第四族元素或含第四族元素的物质的层沉积在阳极表面上。
在典型方法中,基底被保持在高温下,例如在300-900摄氏度范围内的温度下。第四族元素的气态来源可包括硅烷、乙硅烷、氢化硅烷、锗、和类似物。工艺气也可包括其他组分的气态化合物、氢气和惰性载气。
如本技术领域所熟知,关于气压、活化能、基底温度和类似的沉积过程参数可被控制以控制沉积层的形态。在这一点,在本发明中使用的第四族元素或含第四族元素的物质可以是无定形的、纳米晶、微晶、多晶、或前面这些形态的混合物。
值得注意的是,在此描述的这类辉光放电沉积技术可容易适应于大容量过程,例如连续沉积过程。因此,本发明可在制备锂电池电极的自动化的大容量商业过程中实施。一些用于薄膜硅合金材料的辉光放电沉积技术在美国专利6,468,829;5,476,789;4,891,330;和4,600,801中显示,其公开内容被通过引用并入本文。根据本发明,其他薄膜沉积技术,包括溅射技术、蒸发技术和化学气相沉积技术,可同样被用于沉积第四族元素或含第四族元素的物质层。
进一步根据本发明,已发现,当本发明的阳极被并入锂电池时,第四族元素或含第四族元素的物质的层与碳表面在电池首次充电期间反应,形成SEI层,该SEI层与不存在第四族元素涂层形成的SEI层不同,是耐剥落和分解的。尽管不希望受理论的限制,但申请人推测第四族元素与碳相互作用,并且电解质形成了卤化的第四族-碳种类,其构成SEI层。
现参照图2,示出在其上形成了本发明SEI层的阳极的一部分的放大示意图。如图2所描绘,阳极10包括碳体12,其具有SEI层20,SEI层20形成在碳体的电解质接触面上。该SEI层倾向于是非均相的,并且包括许多分区,分区包括第四族元素或多种第四族元素的化合物、卤素和碳化合物,例如芘类、大环化合物(macrocycles)和类似物。该层20,厚度范围在100到5000埃之间,具有好的锂离子传导性。因为本发明的SEI层是耐剥落或其他物理分解的,并入本发明的阳极材料的锂电池展现了好的循环和使用寿命,同时仍然确保碳基阳极系统的益处和优点。
上述说明了本发明的具体实施方式。其进一步的改变和变化对于本领域普通技术人员是容易明白的。是所附权利要求,包括所有等同情况,限定了本发明的范围。
Claims (14)
1.一种用于锂电池的阳极,所述阳极包括:
碳体,所述碳体具有至少一个电化学活性面,当所述阳极被并入锂电池时,该活性面将提供与所述电池的电解质的界面;和
第四族元素或含第四族元素的物质的层,其置于所述至少一个电化学活性面上。
2.如权利要求1所述的阳极,其中第四族元素是硅、锗、锡、或铅中的一种或多种。
3.如权利要求1所述的方法,其中所述第四族元素或含第四族元素的物质基本上是无定形的。
4.如权利要求1所述的阳极,其中所述第四族元素或含第四族元素的物质基本上是纳米晶。
5.如权利要求1所述的阳极,其中所述第四族元素或含第四族元素的层的厚度在100-1500埃的范围内。
6.如权利要求1所述的阳极,其中所述碳体包括石墨。
7.一种制造用于锂电池的阳极的方法,所述方法包括步骤:
提供包括碳体的阳极元件,所述碳体具有至少一个电化学活性面,当所述阳极被并入锂电池时,该活性面将提供与所述电池的电解质的界面;和
涂覆第四族元素或含第四族元素的物质的层在所述至少一个电化学活性面上。
8.如权利要求7所述的方法,其中涂覆所述第四族元素或含第四族元素的物质的层的所述步骤包括通过辉光放电沉积方法沉积所述层。
9.如权利要求7所述的方法,其中涂覆第四族元素或含第四族元素的物质的层的所述步骤包括涂覆包含硅、锗、锡、或铅中的一种或多种的层。
10.如权利要求7所述的方法,其中涂覆第四族元素或含第四族元素的物质的层的所述步骤包括涂覆所述层至厚度在100-1500埃的范围内。
11.如权利要求7所述的方法,其中提供包括碳体的阳极元件的所述步骤包括提供包括石墨的阳极元件。
12.如权利要求7所述的方法,包括进一步步骤:
放置所述阳极在锂电池组电池中,该锂电池组电池包括与所述阳极间隔开的阴极和放置在所述阴极与所述阳极之间的大量电解质;和
在充电模式下操作所述锂电池组电池,以便锂被插嵌入所述碳中,其中其上放置有所述第四族元素或含第四族元素的物质的所述阳极元件的所述至少一个电化学活性面与所述电解质反应以形成固体电解质界面层。
13.如权利要求12所述的方法,其中所述电解质包括锂盐和有机碳酸酯溶剂。
14.一种锂电池,其包括根据权利要求12所述的方法制造的阳极。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/369,746 | 2012-02-09 | ||
US13/369,746 US9490473B2 (en) | 2012-02-09 | 2012-02-09 | Stabilized anode for lithium battery and method for its manufacture |
PCT/US2013/024886 WO2013119629A1 (en) | 2012-02-09 | 2013-02-06 | Stabilized anode for lithium battery and method for its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104221193A true CN104221193A (zh) | 2014-12-17 |
CN104221193B CN104221193B (zh) | 2017-10-31 |
Family
ID=48945820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380008421.2A Active CN104221193B (zh) | 2012-02-09 | 2013-02-06 | 锂电池稳定阳极及其制造方法 |
Country Status (7)
Country | Link |
---|---|
US (2) | US9490473B2 (zh) |
EP (1) | EP2812939B1 (zh) |
JP (2) | JP6653991B2 (zh) |
KR (3) | KR20160143889A (zh) |
CN (1) | CN104221193B (zh) |
CA (1) | CA2863687A1 (zh) |
WO (1) | WO2013119629A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3353844B1 (en) | 2015-03-27 | 2022-05-11 | Mason K. Harrup | All-inorganic solvents for electrolytes |
NL2014588B1 (en) * | 2015-04-07 | 2017-01-19 | Stichting Energieonderzoek Centrum Nederland | Rechargeable battery and method for manufacturing the same. |
US10707531B1 (en) | 2016-09-27 | 2020-07-07 | New Dominion Enterprises Inc. | All-inorganic solvents for electrolytes |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050115480A (ko) * | 2004-06-03 | 2005-12-08 | 한국과학기술연구원 | 이차전지의 전극활물질용 탄소복합체 및 그 제조방법,이를 이용한 이차전지 |
JP2007234585A (ja) * | 2006-01-31 | 2007-09-13 | Jfe Chemical Corp | リチウムイオン二次電池用負極材料およびその製造方法、リチウムイオン二次電池用負極ならびにリチウムイオン二次電池 |
CN100421290C (zh) * | 2004-12-18 | 2008-09-24 | 三星Sdi株式会社 | 阳极活性物质及其制备方法以及包含它的阳极和锂电池 |
US20080261116A1 (en) * | 2007-04-23 | 2008-10-23 | Burton David J | Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries |
US20090269511A1 (en) * | 2008-04-25 | 2009-10-29 | Aruna Zhamu | Process for producing hybrid nano-filament electrodes for lithium batteries |
WO2011137448A2 (en) * | 2010-04-30 | 2011-11-03 | University Of Southern California | Silicon-carbon nanostructured electrodes |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4600801A (en) | 1984-11-02 | 1986-07-15 | Sovonics Solar Systems | Fluorinated, p-doped microcrystalline silicon semiconductor alloy material |
US4891330A (en) | 1987-07-27 | 1990-01-02 | Energy Conversion Devices, Inc. | Method of fabricating n-type and p-type microcrystalline semiconductor alloy material including band gap widening elements |
MY129967A (en) | 1990-07-31 | 2007-05-31 | Clariant Finance Bvi Ltd | New fungi for pitch reduction their production, their preparation and use |
US6524707B1 (en) * | 1999-07-09 | 2003-02-25 | Powerstor Corporation | Carbon-bonded metal structures and methods of fabrication |
US6468829B2 (en) | 2000-05-16 | 2002-10-22 | United Solar Systems Corporation | Method for manufacturing high efficiency photovoltaic devices at enhanced depositions rates |
US6740299B2 (en) | 2001-05-16 | 2004-05-25 | George F. Carini | Method of manufacture of phosphate-bonded refractories |
JP4701579B2 (ja) | 2002-01-23 | 2011-06-15 | 日本電気株式会社 | 二次電池用負極 |
JP4824394B2 (ja) * | 2004-12-16 | 2011-11-30 | パナソニック株式会社 | リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池 |
FR2895572B1 (fr) * | 2005-12-23 | 2008-02-15 | Commissariat Energie Atomique | Materiau a base de nanotubes de carbone et de silicium utilisable dans des electrodes negatives pour accumulateur au lithium |
JP2007213825A (ja) * | 2006-02-07 | 2007-08-23 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池と、その負極活物質および負極、ならびにそれらの製造方法 |
JP2008277156A (ja) * | 2007-04-27 | 2008-11-13 | Mitsui Mining & Smelting Co Ltd | 非水電解液二次電池用負極 |
KR100878718B1 (ko) * | 2007-08-28 | 2009-01-14 | 한국과학기술연구원 | 리튬이차전지용 실리콘 박막 음극, 이의 제조방법 및 이를포함하는 리튬이차전지 |
JP5186884B2 (ja) * | 2007-11-06 | 2013-04-24 | 株式会社豊田中央研究所 | リチウム2次電池用電極及びリチウム2次電池 |
US9431181B2 (en) * | 2009-02-25 | 2016-08-30 | Catalyst Power Technologies | Energy storage devices including silicon and graphite |
US8526167B2 (en) * | 2009-09-03 | 2013-09-03 | Applied Materials, Inc. | Porous amorphous silicon-carbon nanotube composite based electrodes for battery applications |
US20140170483A1 (en) * | 2011-03-16 | 2014-06-19 | The Regents Of The University Of California | Method for the preparation of graphene/silicon multilayer structured anodes for lithium ion batteries |
JP2012204195A (ja) * | 2011-03-25 | 2012-10-22 | Waseda Univ | リチウム二次電池用活物質、リチウム二次電池用負極、およびリチウム二次電池 |
US20130177820A1 (en) * | 2012-01-06 | 2013-07-11 | University of Pittsburgh - of the Commonwealth Systems of Higher Education | Silicon-containing compositions, methods of their preparation, and methods of electrolytically depositing silicon on a current carrier for use in lithium ion battery applications |
US10734639B2 (en) * | 2013-07-03 | 2020-08-04 | California Institute Of Technology | Carbon nanotubes—graphene hybrid structures for separator free silicon—sulfur batteries |
-
2012
- 2012-02-09 US US13/369,746 patent/US9490473B2/en active Active
-
2013
- 2013-02-06 CN CN201380008421.2A patent/CN104221193B/zh active Active
- 2013-02-06 KR KR1020167034079A patent/KR20160143889A/ko active Application Filing
- 2013-02-06 JP JP2014556626A patent/JP6653991B2/ja active Active
- 2013-02-06 CA CA2863687A patent/CA2863687A1/en not_active Abandoned
- 2013-02-06 EP EP13746060.6A patent/EP2812939B1/en active Active
- 2013-02-06 WO PCT/US2013/024886 patent/WO2013119629A1/en active Application Filing
- 2013-02-06 KR KR1020187036625A patent/KR20180137042A/ko not_active Application Discontinuation
- 2013-02-06 KR KR1020147024928A patent/KR20140128411A/ko active Application Filing
-
2016
- 2016-07-05 US US15/202,292 patent/US10170748B2/en active Active
-
2018
- 2018-02-09 JP JP2018022299A patent/JP2018092944A/ja not_active Ceased
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050115480A (ko) * | 2004-06-03 | 2005-12-08 | 한국과학기술연구원 | 이차전지의 전극활물질용 탄소복합체 및 그 제조방법,이를 이용한 이차전지 |
CN100421290C (zh) * | 2004-12-18 | 2008-09-24 | 三星Sdi株式会社 | 阳极活性物质及其制备方法以及包含它的阳极和锂电池 |
JP2007234585A (ja) * | 2006-01-31 | 2007-09-13 | Jfe Chemical Corp | リチウムイオン二次電池用負極材料およびその製造方法、リチウムイオン二次電池用負極ならびにリチウムイオン二次電池 |
US20080261116A1 (en) * | 2007-04-23 | 2008-10-23 | Burton David J | Method of depositing silicon on carbon materials and forming an anode for use in lithium ion batteries |
US20090269511A1 (en) * | 2008-04-25 | 2009-10-29 | Aruna Zhamu | Process for producing hybrid nano-filament electrodes for lithium batteries |
WO2011137448A2 (en) * | 2010-04-30 | 2011-11-03 | University Of Southern California | Silicon-carbon nanostructured electrodes |
US20110311874A1 (en) * | 2010-04-30 | 2011-12-22 | University Of Southern California | Silicon-Carbon Nanostructured Electrodes |
Also Published As
Publication number | Publication date |
---|---|
US10170748B2 (en) | 2019-01-01 |
JP2018092944A (ja) | 2018-06-14 |
KR20180137042A (ko) | 2018-12-26 |
EP2812939B1 (en) | 2022-08-03 |
WO2013119629A1 (en) | 2013-08-15 |
US20160315317A1 (en) | 2016-10-27 |
EP2812939A1 (en) | 2014-12-17 |
US20130209887A1 (en) | 2013-08-15 |
KR20140128411A (ko) | 2014-11-05 |
CN104221193B (zh) | 2017-10-31 |
JP2015510244A (ja) | 2015-04-02 |
JP6653991B2 (ja) | 2020-02-26 |
EP2812939A4 (en) | 2015-10-07 |
KR20160143889A (ko) | 2016-12-14 |
US9490473B2 (en) | 2016-11-08 |
CA2863687A1 (en) | 2013-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cui et al. | A highly reversible, dendrite‐free lithium metal anode enabled by a lithium‐fluoride‐enriched interphase | |
Pearse et al. | Three-dimensional solid-state lithium-ion batteries fabricated by conformal vapor-phase chemistry | |
JP5846910B2 (ja) | 機能傾斜コンポーネントを含む電気化学セル | |
CA2948737C (en) | Conductive bipolar battery plate and assembly method | |
US10224540B2 (en) | Li-ion battery with alumina coated porous silicon anode | |
CN102656728A (zh) | 锂离子电池及这类电池的制造方法 | |
CN101939867A (zh) | 电化学元件用电极 | |
KR101994160B1 (ko) | 배터리 및 배터리 전극 처리 방법 | |
US20220223855A1 (en) | Method for producing silicon-based anodes for secondary batteries | |
TW201429035A (zh) | 導電構件,電極,二次電池,電容器,暨導電構件及電極之製造方法 | |
CN102576903A (zh) | 固体电解质电池 | |
KR101488296B1 (ko) | 리튬 이차전지 셀 구조 | |
CN104253266A (zh) | 一种多层膜硅/石墨烯复合材料阳极结构 | |
CN104221193B (zh) | 锂电池稳定阳极及其制造方法 | |
JP2013165250A (ja) | 集電体及び電極、これを用いた蓄電素子 | |
JP5058381B1 (ja) | 集電体及び電極、これを用いた蓄電素子 | |
EP2883262B1 (en) | Metal/oxygen battery with modified electrode | |
Church et al. | Thick Architected Silicon Composite Battery Electrodes Using Honeycomb Patterned Carbon Nanotube Forests | |
US20240170738A1 (en) | Three dimensional lithium anode with a capping layer | |
JP5666350B2 (ja) | 蓄電装置の作製方法 | |
Vlad et al. | Coated silicon nanowires for battery applications | |
WO2005029552A2 (en) | Sn-c structures prepared by plasma-enhanced chemical vapor deposition | |
TW201709591A (zh) | 多晶粒電極製造方法 | |
KR20150040407A (ko) | 리튬 이차 전지용 전극, 이의 형성 방법 및 리튬 이차 전지 | |
KR20140070111A (ko) | 리튬 이차 전지용 전극, 이의 형성 방법 및 리튬 이차 전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |