[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

AU2002363103A1 - Implantable fluid delivery apparatuses and implantable electrode - Google Patents

Implantable fluid delivery apparatuses and implantable electrode

Info

Publication number
AU2002363103A1
AU2002363103A1 AU2002363103A AU2002363103A AU2002363103A1 AU 2002363103 A1 AU2002363103 A1 AU 2002363103A1 AU 2002363103 A AU2002363103 A AU 2002363103A AU 2002363103 A AU2002363103 A AU 2002363103A AU 2002363103 A1 AU2002363103 A1 AU 2002363103A1
Authority
AU
Australia
Prior art keywords
fluid
implantable
catheter
connector
septum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2002363103A
Other versions
AU2002363103B2 (en
Inventor
Ingeborg Hochmair
Claude Jolly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MED EL Elektromedizinische Geraete GmbH
Original Assignee
MED EL Elektromedizinische Geraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MED EL Elektromedizinische Geraete GmbH filed Critical MED EL Elektromedizinische Geraete GmbH
Priority claimed from PCT/IB2002/004731 external-priority patent/WO2003034960A1/en
Publication of AU2002363103A1 publication Critical patent/AU2002363103A1/en
Application granted granted Critical
Publication of AU2002363103B2 publication Critical patent/AU2002363103B2/en
Priority to AU2009200181A priority Critical patent/AU2009200181B2/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Description

Attorney Docket: 1941/156WO
Implantable Fluid Delivery Apparatuses and Implantable Electrode
Technical Field and Background Art
The present invention relates to implantable devices and, more particularly, to implantable fluid delivery apparatuses and an implantable electrodes.
Background Art
Fluid delivery systems and devices are often used to provide pharmaceuticals to the body of a human or animal subject. Such systems and devices may employ catheters for fluid delivery. It is also known in the art to implant electrodes and electrical prosthesis in the body to provide electrical stimulation to internal organs and tissue.
For example, intra cochlear electrodes are intended to restore some sense of hearing by direct electrical stimulation of the neural tissue in proximity of an electrode contact. As more and more patients with significant and usable residual hearing are implanted with cochlear implants, it becomes imperative to use a minimally traumatic electrode. In addition, devices may be implanted in a subject when the subject is at a very young age and it may be necessary to re-implant several times during a lifetime. Each consecutive insertion of a cochlear implant may cause trauma to spiral ganglion cells to a minimum. Trauma to spiral ganglion cell is cumulative and cannot be undone in the present state of technology.
To reduce trauma to the organ or tissue, electrodes and catheters should be soft, flexible, and insertion forces should be minimum. Unfortunately, most cochlear implant electrodes on the market today require significant force to be inserted, even for distances which are much less than the full length of the scala tympani. The required force to insert the electrode or catheter is related to the size, geometry, and the material used in the fabrication of the particular device. Material used in such devices includes materials for wires, contacts, functional metallic or polymer segment, and bulk material. The size of the electrode or catheter, the rigidity of the material used in the electrode or catheter, the hydrophobicity of the outer shell of the electrode array, the energy stored in one way or another in the electrode and the insertion process of the device have an impact on the amount and location of damages that will be inflected to the tissue of the labyrinthe during electrode placement. With respect to fluid delivery systems in general, removal and replacement of the system or of particular parts of the system may also cause trauma and damage to living tissue.
Damage and trauma cause bleeding, inflammation, perforation of soft tissue, tears and holes into membranes, and fracture of thin osseous structures. The resulting damage to the inner ear, for example, may cause loss of surviving hair cells, retrograde degeneration of the dendrite which inervates the organ of Corti, and in the worst case, spiral ganglion cell death in the Rosenthal's canal. Cell death means quantitatively less neural tissue is available for stimulation, and qualitatively, that less frequency-tuned fibers are available to represent frequency information. Loss of dendrites without loss of spiral ganglion means that acoustic stimulation is no longer possible, and that no synergetic effects between acoustic and electric stimulation is available. Electro-acoustic synergetic effects may be critical for good sound discrimination in noisy environments.
Summary of the Invention
In accordance with a first embodiment of the invention, a fluid delivery system includes an implantable fluid source and a first catheter in fluid communication with the implantable fluid source. An implantable micro-valve is in fluid communication with the first catheter. The implantable fluid source may include a fluid port, pump, osmotic pump or a fluid reservoir which may or may not be refillable. In accordance with related embodiments, the fluid delivery system includes a second catheter in fluid communication with the implantable micro-valve. The implantable micro-valve may include a magnet. Similarly, the implantable micro-valve may be self-closing. In accordance with other related embodiments the fluid delivery system may include a switch for stopping fluid flow through the system and/or an electrode in communication with the fluid source or with the first catheter. The electrode may be part of a cochlear implant or other implantable prosthesis.
In accordance with another embodiment of the invention, a fluid delivery system includes an implantable fluid source and an implantable micro-valve in fluid communication with the fluid source. In accordance with this embodiment, the fluid source may be a canister which may be removed from the system. In accordance with a further embodiment of the invention, an electrode for an implantable prosthesis includes a flexible front end including one or more metal contacts and a back end including one or more metal contacts. The flexible front end is substantially thinner than the back end such that forces required to introduce the flexible front end to soft tissue are minimal. In accordance with related embodiments, the flexible front end and the back end are comprised of a polymer matrix and each of the metal contacts may be connected to a wire that runs through the polymer matrix. The flexible front end may comprise about one half the mass of the back end. In accordance with another related embodiment, the electrode may include one or more fluid outlets, and each of the fluid outlets is in communication with at least two least two fluid channels.
In accordance with a further related embodiment, the back end of the electrode may include at least two segments, the two segments being fully connected to one another prior to implantation and at least partially disconnected from one another following implantation. In accordance with additional related embodiments, the electrode may include a stopper disposed upon an outer wall of the electrode for limiting the extent of implantation and/or a connector disposed between the flexible front end and the back end such that the flexible front end may be separated from the back end.
In accordance with another embodiment of the invention, a cochlear implant includes an implantable housing, the implantable housing including a current source, and an electric lead in communication with the current source. The electric lead includes a fluid delivery channel and an electrode array including one or more fluid outlets is in communication with the fluid delivery channel.
In accordance with another embodiment of the invention, an implantable catheter for fluid delivery includes a flexible polymer based housing having an internal channel in fluid communication with an implantable fluid source and one or more outlets disposed on the housing, each of the outlets including at least two outlet channels. In accordance with related embodiments, the catheter includes an adjustable blocker for closing an incision through which the catheter is inserted and/or a reinforcing filament for increasing ease of implantation. The reinforcing filament may include a wire reinforcing and/or a hardened polymer.
In accordance with yet another embodiment of the invention, a icro-septum connector includes n implantable port connector having a septum and an implantable spear connector having a needle for insertion into the septum. The implantable port connector may include a fluid source in fluid communication with the needle, a compression ring for compressing the septum and a mechanism for guiding the needle as it is inserted into the septum. In accordance with related embodiments the micro-septum connector may also include a stopping device for preventing direct contact between the implantable port connector and the implantable spear connector and/or a locking device for preventing disengagement of the needle from the septum. The micro-septum connecter may further include a port catheter in fluid communication with the implantable port connector and/or a bacterial filter disposed between the fluid source and port catheter or between the implantable port connector and the port catheter. The micro-septum connector may also include a spear catheter in fluid communication with the needle.
In accordance with another embodiment of the invention, an apparatus for delivering fluid to the body of a subject includes an implantable fluid source, a first catheter in fluid communication with the fluid source, and a micro-septum connector. The micro-septum connector includes an implantable spear connector in communication with the first catheter, the implantable spear connector including a needle, and an implantable port connector having a septum into which the needle is inserted. In accordance with related embodiments, a second catheter is in fluid communication with the implantable port connector.
In accordance with a further embodiment of the invention, an apparatus for delivering fluid to the body of a subject includes a first catheter in fluid communication with a fluid source and a micro-septum connector. The micro-septum connector includes an implantable spear connector in communication with the first catheter, the implantable spear connector including a needle, and an implantable port connector having a septum into which the needle is inserted. A second catheter is in fluid communication with the implantable port connector, and an implantable electronic prosthesis having one or more fluid channels is in fluid communication with the second catheter.
In accordance with another embodiment of the invention, an apparatus for delivering fluid to the inner ear of a subject includes a first catheter in fluid communication with a fluid source and a micro-septum connector. The micro-septum connector includes an implantable spear connector in communication with the first catheter, the implantable spear connector including a needle, and an implantable port connector having a septum into which the needle is inserted. The apparatus also includes fixation device for affixing the implantable port connector to the inner ear of a subject and the fixation device may be affixed to a promontory bone of the subject. In accordance with another embodiment of the invention, an apparatus for delivering fluid to the body of a subject includes an implantable fluid reservoir, the implantable fluid reservoir including a first septum, a catheter in fluid communication with the implantable fluid reservoir, and a first needle in fluid communication with the catheter. In accordance with related embodiments, a bacterial filter and/or a flow restrictor may be disposed between the implantable fluid reservoir and the catheter. An anchor for affixing the first needle to the catheter may also be included, and the anchor may include a silicone plug and/or one or more metal rings. In accordance with other related embodiments, the apparatus may also include an access port in fluid communication with the first needle. The access port includes a second septum, the second septum including a micro reservoir; and a second needle in fluid communication with the micro reservoir. An anchor for affixing the second needle to the second septum may also be included, and the anchor may include one or more metal rings. The metal rings may be embedded in silicone.
In accordance with a further embodiment of the invention, an implantable access port for delivering fluid to the body of a subject includes an implantable septum, the implantable septum including a micro reservoir, and a needle in fluid communication with the micro-reservoir. The access port may include an anchor for affixing the needle to the implantable septum, and the anchor may include one or more metal rings that may be embedded in silicone. In accordance with another embodiment of the invention, an implantable fluid source for delivery of fluid to the body of a subject includes an implantable fluid reservoir, the implantable fluid reservoir having at least one fluid channel, and a septum in fluid communication with the at least one fluid channel.
Brief Description of the Drawings The foregoing features of the invention will be more readily understood by reference to the following detailed description, taken with reference to the accompanying drawings, in which:
Fig. 1 is a graphical illustration of a fluid delivery system in accordance with an embodiment of the present invention; Fig. 2 is a graphical illustration of a fluid delivery system fused to a cochlear implant in accordance with another embodiment of the invention;
Fig. 3 is a graphical illustration of a fluid delivery system implanted parallel to a cochlear implant in accordance with an embodiment of the invention;
Fig. 4 is a graphical illustration of a fluid delivery system in accordance with a further embodiment of the invention;
Fig. 5 is a graphical illustration of a fluid delivery system in accordance with another embodiment of the invention; Fig. 6 is a graphical illustration of a fluid delivery system having a fluid canister in accordance with an embodiment of the invention;
Fig. 7 is a graphical illustration of a switch that may be implanted under the skin in accordance with the embodiments of Figs. 1-5; Fig. 8 is a graphical illustration of a switch that may be implanted in the middle ear of a subject in accordance with the embodiments of Fig. 5;
Fig. 9 is a graphical illustration of a refillable reservoir in accordance with another embodiment of the invention;
Fig. 10 is a graphical illustration of a self closing valve in accordance with a further embodiment of the invention;
Fig. 11 is a graphical illustration of a fluid delivery system for delivery of fluid to the inner ear of a subject in accordance with another embodiment of the invention;
Fig. 12 is a graphical illustration of an implantable micro-septum connector configuration for use with a pump and delivery catheter in accordance with another embodiment of the present invention;
Fig. 13 is a graphical illustration of an implantable micro-septum connector configuration for use with a port or reservoir and delivery catheter in accordance with a further embodiment of the invention;
Fig. 14 is a graphical illustration of an implantable micro-septum connector configuration for use with an electronic prosthesis in accordance with another embodiment of the invention;
Fig. 15 is a graphical illustration of a micro-septum connector before connection of an implantable port connector and an implantable spear connector in accordance with the embodiments of Figs. 12-14; Fig. 16 is a graphical illustration of a micro-septum connector after connection of the implantable port connector and the implantable spear connector in accordance with the embodiment of Fig. 15;
Fig. 17 is a graphical illustration of an apparatus for delivering fluid to the inner ear of a subject in accordance with a further embodiment of the invention; Fig. 18 is a graphical illustration of a catheter in accordance with another embodiment of the invention;
Fig. 19 is a pictorial illustration of the catheter of Fig. 18 implanted in the ear of a subject; Fig. 20 is a graphical illustration of an implantable electrode in accordance with another embodiment of the invention;
Fig. 21 is a graphical illustration of the electrode of Fig. 20 implanted in the inner ear of a subject; Fig. 22 is a pictorial illustration of wires associated with the electrode of Figs. 20 and 21 ;
Fig. 23 is a graphical illustration of an implantable electrode for delivering fluid to the body of a subject in accordance with another embodiment of the invention;
Fig. 24 is a graphical illustration of the electrode of Fig. 23 implanted in the inner ear of a subject in accordance with a further embodiment of the invention;
Fig. 25 is a graphical illustration of a cross sectional view of the electrode of Fig. 23;
Fig. 26 is a graphical illustration of an electrode used in connection with an implantable housing in accordance with a further embodiment of the invention; Fig. 27 is a graphical illustration of an implantable electrode in accordance with another embodiment of the invention;
Fig. 28 is a graphical illustration of a cross sectional view of the electrode of Fig. 27;
Fig. 29 is a graphical illustration of the electrode of Fig. 27 implanted in the inner ear of a subject;
Fig. 30 is a graphical illustration of the electrode of Fig. 27 including a clip for joining the segments;
Fig. 31 is graphical illustration of an apparatus for delivering fluid to the body of a subject in accordance with a further embodiment of the invention; Fig. 32 is a graphical illustration of a needle of the embodiment of Fig. 31 ;
Fig. 33 is a graphical illustration of an implantable access port in accordance with another embodiment of the invention; and
Fig. 34 is a graphical illustration of an apparatus for delivering fluid to the body of a subject in accordance with Figs. 31-33.
Detailed Description of Specific Embodiments
Fig. 1 is a graphical illustration of a fluid delivery system in accordance with an embodiment of the present invention. For purposes of this embodiment, the fluid delivery system is employed to deliver pharmaceuticals to, for example, the inner ear of a subject. However, the fluid delivery systems and apparatuses described herein may be used to deliver many different types of fluids to one or more internal areas of a subject's body. The system shown in Fig. 1 includes a biocompatible and sealed micro-valve 101 with an inner ear side 103 and a middle ear side 105. The micro-valve 101 provides a secure path between the middle ear and the inner ear through the promontory bone 107 of the cochlea or through the round window. The connection may, for example, be to the scala tympani, vestibuli or scala media. The micro-valve 101 provides permanent access to the inner ear for fluid delivery of various viscosity and healing functions. The micro-valve 101 may be made of, for example, polymer, titanium (precision cut by laser micro-machining as can be produced by Kurtz G.m.b.H., Germany), nickel-titanium alloy or any combination of biomaterial. For use in the inner ear, the micro-valve 101 may be anchored on the cochlea promontory bone 107. Similarly, the micro-valve may be located in the round window or semicircular canal of the inner ear. The anchoring and sealing between the metallic and/or polymer based micro- valve 101 and the promontory bone 107 is accomplished through use of, for example, a biocompatible cement, and/or a mechanical fitting in a treaded shaft, and by osteo-integration. The connection between the micro-valve 101 and the promontory bone 107 may be, for example, through a tube with an inner and outer thread. The micro- valve 101 may be removable from the promontory bone 107 if and when necessary. The placement of the micro-valve 101 typically, but not necessarily, requires drilling a hole approximately .8 to 2 mm or more in diameter on the promontory bone. The micro-valve 101 may be self closing, as shown in Fig. 10, when no fluid pressure is sensed through the catheter, reservoir or pump. The micro-valve 101 may be surface coated, or treated by chemical vapor deposition or other means to prevent tissue growth and occlusion of the valve orifice over time in the intra-cochlea region. The micro-valve 101 may also include a magnet, and a magnetic control system through a tympanoplasty.
Fluid delivery to the micro-valve 101 may be accomplished through a flexible catheter 109 that may be, but is not limited to, .5 to 2 mm in inner diameter. One end of the catheter 109 may be securely connected, for example, to the middle ear side 105 of the micro-valve 101. The connection is sufficiently tight to prevent fluid leakage from the catheter to the middle ear. The connection may be permanent or dis-connectable through a surgical approach. The catheter 109 inner surface may be treated to impart hydrophillic properties to the lumen, as hydrophillic properties are favorable to the delivery of viscous fluid. The other end of the catheter may be connected to a fluid source such as a pump 111 with reservoir 113. Similarly, the fluid source may comprise a reservoir 401 with a passive unloading system such as a spring activated piston or a piston which includes a magnet and is operated by magnetic forces from the exterior or interior as shown in Fig. 4. The catheter 109 may also be connected to an osmotic pump. The pump 111 may be active, which means it may be operated by energy transferred transcutaneously to an electronic control box such as the one used with a cochlear implant or other implantable prosthesis. The pump 111 may also be passive with energy transfer by, for example, a gas or other fluid loaded in a chamber of the pump. When energy is delivered to the pump 111 to move fluid from the reservoir 113 down the catheter to the inner ear or when the fluid is moved via a spring loaded reservoir 401, the pressure is sufficient to open the micro-valve 101. When no energy or pressure is sensed by the micro-valve 101, the micro-valve 101 may close automatically, thereby sealing the inner from the middle ear. The micro-valve 101 closure may take place through the use of a titanium sphere 1001 attached to a spring 1003 on the inner ear side of the valve as shown in Fig. 10. However, other methodologies for opening and closing the micro-valve 101, such as fluid pressure or piezoelectrics, may be used.
In another with another embodiment of the invention, the micro-valve 101 may be securely connected directly to a screw-on canister 601 as shown in Fig. 6. This allows for one-time fluid delivery. The canister 601 may be removed and refilled or replaced by another canister with a passive fluid delivery function.
As noted above, fluid delivery systems in accordance with the invention may be used in combination with an electronic prosthesis or implant, for example, a cochlear implant. This may be accomplished in two ways: fusion of the catheter and an electrode associated with the prosthesis or implant, or parallel delivery of fluid and electrical current to the body. Fig. 2 is a graphical illustration of a fluid delivery system fused to a cochlear implant in accordance with an embodiment of the invention. A catheter 109 of the fluid delivery system is connected to a cochlear implant 201 via its electrode 203. The electrode 203 is hollow over a length which starts at a catheter and electrode junction 205. (Note that a valve as described above may also be used with this embodiment.) The hollow part of the electrode 203 may continue in length to somewhere intra-cochlea. The hollow electrode 203 acts as a pathway for fluid delivery to the inner ear. On the intra-cochlea section of the electrode one or several channels of adequate size built in the electrode 203 material permit access to the fluid of the inner ear. The catheter 109 which connects a fluid source to the implant may or may not be dis-connectable from the electrode 203. When not dis-connectable, a valve or switch (not shown) prevents any connection between the inner ear and the other structures of the temporal bone, including the middle ear (fluid, tissue or air). Fig. 3 is a graphical illustration of a fluid delivery system implanted parallel to a cochlear implant in accordance with an embodiment of the invention. Parallel delivery means that the cochlear implant 301 and the fluid delivery system 305 are not fused. A single large cochleostomy or two separate but adjacent cochleostomies may be used to accommodate the separate leads of the electrode 303 and the fluid delivery system 305. The cochleostomy (ies) may be next to each other on the promontory bone. In this case the cochlear implant electrode 303 and fluid delivery system 305 may be introduced in the inner ear through the classical surgery which includes a posterior tympanatomy or one enlarged cochleostomy allowing both electrode and fluid delivery through the same or adjacent promontory bone opening. A typical approach requires that two cochleostomies be drilled after two separate surgical approaches to the promontory bone. The first surgical approach is the classical posterior tympanatomy. The second surgical approach is a variant of the so-called supra-meatal approach that has been described by Prof. Kronenberg, Prof. Hausler, and Dr. Kiratzidis. The electrode or fluid delivery system may be inserted in the classic cochleostomy following posterior tympanotomy. The electrode or fluid delivery system may be inserted in a cochleostomy following the suprameatal approach. The electrode or fluid delivery system may also be implanted through the round window. All permutations of electrode and fluid delivery system are possible with the two cochlestomies or one cochleostomy and the round window opening.
Fig. 5 is a graphical illustration of a fluid delivery system in accordance with another embodiment of the invention. In accordance with this embodiment, the catheter may be inserted directly in the inner ear without a promontory valve present. In this case a cochleostomy is drilled and the catheter is inserted a certain distance in the opening. The catheter may be securely sealed with fibrin glue (for example) on the promontory bone.
Fig. 7 is a graphical illustration of a switch that may be implanted under the skin in accordance with embodiments of the invention. In the various embodiments (reservoir with piston, reservoir and pump, screw on canister, refillable and non refillable reservoir, reservoir incorporated with a cochlear implant system, drug delivery system with or without valve on the promontory, etc.) a provision may be incorporated to stop fluid flow at any time during fluid delivery if the patient should suffer side effect. Fluid flow may be stopped, for example, through telemetry when a pump with a telemetry receiver is included in the design. Fluid may also be stopped by a passive on/off mechanical switch 701. Such an on/off switch 701 may be incorporated on the catheter, on the reservoir, or on the valve, for example. The switch 701 may be activated on or off manually when reachable from the outside (if located at the surface of the skull just underneath the skin for example). The switch 701 may also be activated through a magnetic energy transmitted transcutaneously or through the tympanic membrane 801, shown in Fig. 8. The switch may also be activated on or off through a small opening on the tympanic membrane (tympanoplasty) followed by insertion of a specially designed tool in the valve or on a specially located switch in the middle ear close to the valve. The specially located switch may be a metallic part overhanging the promontory and accessible through a tympanoplasty.
In accordance with various embodiments of the drug delivery system, the reservoir or canister may be refillable. Fig. 9 illustrates that refilling may take place, for example, through injection of the therapeutic fluid through a thick impermeable membrane located on top of the reservoir, or through a special outlet valve. Such refilling can take place following a local anesthesia, and after incision of the skin covering the reservoir. Refilling may also take place through a small incision on the tympanic membrane and the introduction of a needle in a receptacle on the reservoir. When the delivery system is a spring loaded reservoir, for example, a valve switch system may be used to refill the reservoir. After access to the apparatus, valve switch 901 is closed and valve switch 902 is open. Fluid may be injected through the switch valve 902 with a needle for example, thereby pushing piston 903 back and loading the pump fluid and compressing the spring 905.
Fig. 11 is a graphical illustration of a fluid delivery system for delivery of fluid through the tympanic membrane of a subject. Here, the pump and/or reservoir 111, 113 is located outside the outer ear, and a catheter traverses the outer ear and the tympanic membrane. A segment of the catheter 1101 in the middle ear connects to a valve located on the promontory bone, round window or oval window. The catheter 1101 connection may be dis-connectable by pulling back on the catheter tube and causing a force from the middle ear toward the outer ear. As in the embodiments described above, the pump/reservoir may comprise and on/off switch and the reservoir may be refillable.
Figs. 12-14 illustrate another device for delivering fluid to the body of a subject. The device includes a fluid source, such as a fluid pump 1201 (as shown in Fig. 12) or a fluid port or fluid reservoir 1301 (as shown in Fig. 13). The device further includes a microseptum connector 1203. The micro-septum connector is in fluid communication with a spear catheter 1205 at a proximal end which, in turn, is in fluid communication with the fluid source. The micro-septum connector 1203 is also in fluid communication with a port catheter 1207 at a distal end. The port catheter 1207 may be in fluid communication with another catheter (not shown) or with one or more electrodes or electronic prostheses 1401, as shown in Fig. 14. Each electrode or electronic prostheses 1401 may have one or more fluid channels 1403 with outlets such that each electrode or electronic prosthesis 1401 acts in part as a catheter having one or more outlets.
As described above, the micro-septum connector 1203 is in fluid communication with an implantable fluid pump, a fluid port or reservoir, or an osmotic pump via a spear catheter 1205 and in fluid communication with the body of the subject via a port catheter 1207 which may be connected to or in fluid communication with another catheter or an electrode or electronic prosthesis (such as 1401). The fluid delivery device (such as the port catheter 1207 and electrode or electronic prostheses 1401) and the device that drives and delivers the fluid (such as the fluid pump 1201 or fluid port 1301) are designed to be implanted in a human subject or an animal subject in the course of a surgical procedure. The connection between the two devices is accomplished with the micro-septum connector 1203.
Fig. 15 is a graphical illustration of a micro-septum connector according to an embodiment of the invention. The micro-septum connector comprises an implantable port connector 1501 and an implantable spear connector 1503 (shown unconnected in Fig. 15 and connected in Fig. 16). The implantable port connector 1501 includes a septum 1505 and may be in fluid communication with the port catheter 1207 which transports fluid to a specific location in the subject's body at its distal end. (When in fluid communication with the port catheter 1207, the port connector 1501 is located at the proximal end of the port catheter 1207 as shown if Figs 12-14.) The distal end of the port catheter 1207 may have one or more openings to allow fluid to disseminate in the surrounding biological tissue. The spear connector 1503 includes a needle 1507 and may be in fluid communication with the spear catheter 1205 at its distal end. Toward the proximal end of the spear catheter 1205 a fluid source is attached.
In one embodiment of the invention, the proximal end of the port connector 1501 and distal end of the spear connector 1503 do not join surface to surface. This is to prevent the creation of dead space between the flat surfaces of the micro-septum connector 1203 when joining the port connector 1501 and spear connector 1503 via the needle 1507. In such an embodiment, the needle 1507 of the spear connector 1503 traverses the septum 1505, but a remaining part of the needle 1507, anterior to the septum 1505, is exposed to body fluid and body tissue. Such a situation promotes a good tissue seal at the point where the needle 1507 enters the septum 1505. In addition, the encapsulating tissue is irrigated by the surrounding tissue and can respond well to any inflammation. It is also feasible to introduce tissue, fascia or muscle through the needle 1507 up to the flat end of the spear connector 1503. Introduction of tissue will promote good healthy tissue growth between the flat ends of the port connector 1501 and spear connector 1503. As can be seen in Fig. 16, once joined, the port connector 1501 and the spear connector 1503 permit safe fluid transport without leakage to the surrounding biological environment.
An important feature of the port connector 1501 is the septum 1505. The septum 1505 is made preferably of rubber silicone. The port connector 1501 may also include a compression ring 1511. The compression ring 1511 (or other compression device) compresses the silicone to impart septum properties to the device. The compression ring 1511 is preferably made of medical grade titanium, however, any other material that can compress the silicone in a cylindrical part may be used. Such materials may include shape memory nitinol metal and memory shape polymer. The compression ring 1511 may be terminated toward the connecting side of the port connector 1501 by a guide or a guide mechanism 1513, stopper or other stopping device 1515 and locking mechanism 1517. A bacterial filter 1509 may or may not be placed between the port connector 1501 and the port catheter 1207. The port connector 1501 may also include a reservoir 1521 which may be lined with titanium shell or a titanium shell to prevent piercing by the needle 1507. The proximal end of the port catheter 1207 may optionally be silicone bonded with the port connector. A layer of silicone may be deposited on the entire port connector 1501 to prevent exposure of metal to the environment, and favor encapsulation. Deposition may be accomplished by dip coating the port connector 1501 in the appropriate silicone rubber solution.
The spear connector 1503 may be made of silicone or epoxy or any other bio compatible material as deemed necessary or profitable to the invention. A medical needle (such as 1507) of appropriate size, material, and shape is inserted in a mold such that both ends of the needle protrude out of the mold. Injection molding of silicone and/or medical grade epoxy solidly encases the core of the needle. A catheter (such as the spear catheter 1205) is introduced on one end of the needle and silicone is added and cured to seal the spear connector. The needle 1507 may be slanted and sharp on the side that will pierce the septum 1505. Note that the hole on the needle 1507 that will transfer fluid may be at the end of the needle or may be on the side of the needle at a short distance from the tip.
As noted above, the micro-septum connector 1203 may also include a guide or guiding mechanism (such as 1513) to line up the needle 1507 and the port connector 1501 before piercing of the septum 1505 by the needle 1507. The guide or guiding mechanism 1513 permits the lining up of the tip of the needle 1507 with the center of the septum 1505. The guide or guiding mechanism 1513 also prevents large deviation of the needle 1507 upward or downward or sideways. Such deviation could lodge the tip of the needle 1507 in the internal wall of the port connector 1501 and prevent fluid flow. The stopper or stopping device 1515 may be used to prevent the fusion of the spear connector 1503 and the port connector 1501 on their flat surfaces. The stopper or stopping device 1515 permits a section of the needle 1507 to be exposed to the body fluid even at full insertion. The stopper or stopping device 1515 consequently prevents the creation of a dead space between the flat surfaces of the implantable port and spear connector ends when connected (unless such a flat connection is profitable to the invention by, for example, having an antibiotic coating to prevent formation of a nidus of infection at all time).
The locking mechanism 1517 may be included in the micro-septum connector 1203 to promote the stability of the micro-septum connector 1203 under normal body movement and usage stress. The locking mechanism 1517 may be reversible to allow for replacement of one or more of the parts described above.
Once fabricated and sterilized by appropriate means, a surgeon may join the port connector 1501 and the spear connector 1503 by introducing the needle 1507 through the septum 1505 and, optionally, locking the micro-septum connector 1203 with the locking mechanism 1517. Before joining the port connector 1501 to the spear connector 1503, each may be filled separately with a fluidic pharmaceutical agent. Separate filling allows good priming of the implantable connectors 1501 and 1503 before connection. Filling of the spear catheter 1205 may be accomplished by filling the pump (usually though a pump septum), port with septum and reservoir, or osmotic pump. It may also be that the implantable connectors 1501 and 1503 are connected before any filling and priming of the devices takes place.
If removal and replacement of one or both of the implantable connectors 1501 and 1503 is desired, surgical intervention may include careful removal of tissue growth and membrane encapsulation around the port connector 1501 and removal of the spear connector 1503 by pulling back on one or the other connectors. At this stage either or both of the port connector 1501 and spear connector 1503 may be positioned in the biological environment of interest. This may be done after priming the system in the usual fashion described above. Once replaced and positioned, connection of the port and spear to connectors is accomplished by engaging the port connector 1501 and spear connector 1503 (perhaps by employing the guide 1513), piercing the septum 1505, and, if desired, locking the mechanisms via the locking mechanism 1517.
The system described with respect to Figs. 12-16 may be used to provide fluid to the inner ear of a subject. Fig. 17 is a graphical illustration of an apparatus for delivering fluid to the inner ear of a subject in accordance with a further embodiment of the invention. The inner ear comprises the cochlea and the semi circular canals (not shown). Fluid delivery may be accomplished through an electrode of a cochlear implant, if so desired, or through a reinforced fluid delivery catheter for partial and full insertion into the inner ear, or through a catheter just apposed against the round window membrane. When such an application is desired, a bony recess may be formed on the surface of the skull to partially bury the connector assembly. Burying the connector prevents protrusion of the connector under the scalp.
In accordance with the embodiment of Fig. 17, a spear connector 1205 and needle 1507 are used to provide fluid to a septum 1701. The septum 1701 may be of appropriate size and shape to be embedded in the inner ear of a subject or on the promontory bone 1703 following surgery. A metal flap or a facial recess may be employed as a bone fixation feature 1705 in order to fix the septum 1701 to the inner ear or the promontory bone 1703. For example, after drilling the promontory bone 1703 with a 2 mm or smaller bore, a conical bed may be made in the bone. A simple conical septum (such as 1701) may be lodged at the opening of the cochlea canal 1708 and anchored on the promontory bone 1703 of the cochlea. The septum 1701 will then remain available for fluid delivery via connection with the spear connector 1205. In such a configuration, the semi circular canal (including the utπcule) may be accessible for fluid delivery. Additionally, the configuration of Fig 17 may also include a compression ring 1707 and stopper 1709 for the purposes explained with respect to the embodiments above. The fluid delivery systems of Figs. 12-17 can be easily and quickly connected with a connector. Connections may be long term and leak proof and the fluid delivery systems can be easily disconnected. Upon disconnection, the port catheter may remained sealed, and the fluid delivery systems may be reconnected with a different or with the same fluid driver. The port catheter may remain implanted for use years later while the driver is explanted. If the device is used with an electrode, the electrode does not need to be removed if the fluid driver is taken out. In addition the fluid driver may be reconnected to the electrode at a later date. Fluid delivery modules may be connected in parallel to a single port catheter if so deigned. Figs. 18 and 19 illustrate a catheter in accordance with another embodiment of the invention. The catheter 1801 is designed to be partially or fully inserted in the body of a subject. For example, the catheter 1801 may be inserted in the inner ear (scala tympani, scala vestibuli, or semi circular canals) through a cochleostomy and to deliver pharmaceutical agents to the fluid of the inner ear. Atraumatic insertion of the catheter 1801 depends on the mechanical properties of the catheter. Mechanical properties must be such that an atraumatic insertion around the curvature of the scalae is possible.
The catheter 1801 may be conical or cylindrical in shape, round or elliptical in cross section and may have a rounded tip 1811 for ease of implantation. The catheter 1801 may be polymer based, and the polymer may include silicone, for good flexibility. Alternatively, the catheter may be made of a biodegradable polymer. Similarly, the catheter 1801 may be made of a material which shrinks when stretched.
The catheter 1801 may optionally include one or more reinforcing wires and/or ribbons 1807 made of hard polymer filament or metal or metal alloy to increase the pushability of the device and enhance implantation. The catheter 1801 may also include markers 1805 on the surface of the polymer to indicate insertion depth and/or an adjustable blocker to close the cochleostomy through which it is inserted. Embodiments of the catheter 1801 include double outlets 1809 to provide free flow in the fluid, and these outlets 1809 may be in opposite directions. Similarly, the catheter 1801 may include more than one channel 1803, 1817, 1819 in the center (or toward edges) of the catheter body to control a fluid or drug concentration-distribution profile. The catheter 1801 may also include a lubricating coating to enhance insertion. Similarly, the catheter 1801 may be coated with cortico steroid and/or antibiotics to prevent infection.
In related embodiments, the catheter 1801 may have an on/off switch or valve 1813 accessible by the subject (activated by a magnet or by mechanical pressure) located on the subject's body such as on the skin or, when used in connection with fluid delivery to the inner ear, on the skull between the fluid delivery reservoir and intra inner ear section. The valve or switch 1813 may be used to prevent backflow of fluid. The catheter 1801 may additionally include a moveable stopper 1815 to promote ease and accuracy of insertion. The catheter 1801 is designed with an internal channel 1803 for fluid delivery. For example, localized delivery of fluid to the inner ear may maintain spiral ganglions cell functional characteristics, regenerate dendrites, and promote the preservation of residual hearing, arrest progressive hearing loss. Applications may include delivery of cortico- steroids to prevent inflammation, medicine to arrest sclerosis, and tissue growth and be used for the novel treatment for tinnitus and vertigo.
Fluid delivery is accomplished through the hollow channel 1803 formed on the catheter lead up to a location intra scala. One or more outlets 1809 may be included in the catheter 1801. The channel 1803 may be connected to an internal micro pump or to a port including a septum for external pumping of pharmacological agent. The hollow channel 1803 disposed close to the center or more off-centered to the edges of the catheter 1801 is formed by reverse molding. This means that a place holder may be included in a mold prior to injection molding. After injection molding, the place holder then is removed and a hollow channel is left in its place. Outlet(s) 1809 for the fluid delivery channel may be located basally and/or apically. The outlet(s) 1809 for fluid delivery may be coated with a ring of slow release bioactive agent to prevent tissue growth and occlusion of the outlets over time.
Each single outlet 1809 for fluid delivery may include two outlet channels 1817 and 1819 180 degrees apart. The two outlet channels 1817 and 1819 are connected either in a rectilinear fashion or they are offset from one another The object of having the two outlet channels 180 degrees apart in a catheter designed for fluid delivery to the inner ear (as shown in Fig. 19) is to ensure that one outlet channel is always facing the perilympahtic fluid. With one outlet channel of the outlet 1809 facing the basilar membrane or the lateral wall of the scala tympani the possibility of the outlet channel becoming occluded exists. Each outlet channel may be formed with micromachined titanium and the metal laced with Cortico steroid-laced Silicone (drug eluting) covering (conformal coating, dipped, plasma deposition) on titanium micro tube. Such surface modification is intended to prevent occlusion of the outlets 1809.
Fig. 20 is a graphical illustration of an implantable electrode in accordance with another embodiment of the invention. The electrode 2000 comprises an electrode lead
2001 and an electrode array 2003. The electrode array 2003 includes a front end 2007 and a back end 2005. The electrode array 2003 is defined as the distance from the first contact 2009 on the front end 2007 to the last contact on the back end 2005. The electrode 2000 is made of a polymer with wires and contacts 2009 embedded or deposited on the polymer. The polymer may be silicone, fluoropolymer, or other biocompatible material.
Most cochlear implant electrodes which have been designed for scala tympani lateral wall placement have a limited electrode extent of around 16 mm. Insertion depth of the electrode in the scala tympani is usually limited to around 23 mm. An electrode extent of 16 mm inserted 23 mm along the lateral wall of the scala tympani covers a limited sound frequency range and bandwidth in the cochlea. With the electrode partially displaced towards the medial wall, the frequency range increases but remains fractional of the full bandwidth since some electrodes are more or less close to the lateral wall. With an electrode extent of more than 26 mm inserted 28 to 31 mm along the outer wall the near complete bandwidth of the cochlear can be stimulated either at the spiral ganglion cells in the first cochlea turn, and/or at the axonal processes in the 2nd turn. With deep insertion, current spread is not required for stimulating tonotopic regions out of range of the 1 st and last contact on the electrode array. A prerequisite to the benefits associated with deep electrode insertion is minimum insertion trauma from base to apex.
The electrode 2000 is designed to have properties which reduce the amount of force necessary for introduction in the cochlea. Reducing the electrode insertion force and increasing the electrode flexibility reduces the amount of trauma inflicted to the soft tissue which lines the scala tympani walls. Reducing the insertion trauma to the maximum is most beneficial to the patients who suffer from severe deafness and may be using a hearing aid in the ipsilateral ear, or have residual hearing which allows perception of low frequency sound unaided but have poor speech discrimination. The interest in keeping electrode trauma minimized is compounded by the fact that a patient implanted today may receive a device replacement or a device addition which restores some aspects of the degenerated neural pathway. If such neural a pathway is mechanically disturbed during electrode insertion there is a high likelihood that the pathway will be permanently destroyed. A cochlear implant electrode is usually inserted through the inner ear (scala tymapani or scala vestibuli) through a hole drilled on the bony surface protecting the spiraling cochlea. If residual hearing is present it may be of interest to limit the insertion depth to a region below where acoustic hearing is present. A stopper 2015 on the electrode 2000 can limit insertion depth to a fixed predetermined value, 20 mm for example (but not limited to 20 mm) 20 mm corresponds to about 1 turn of cochlea. The stopper 2015 is designed to have vertical wall which prevents insertion beyond the cochleostomy. Slots may be built on the stopper 2015 to allow a surgeon to view the cochleostomy as the stopper 2015 approaches the external bone of the inner ear. In another embodiment, the stopper 2015 has a conical shape which allows for plugging of the cochleostomy. The stopper 2015 can also be a slider which is moved down from a superior region on the electrode 2000. The insertion depth of the electrode 2000 may be controlled and limited to a predetermined value. The pre-determined insertion depth value may be based on the patient audiogram. If the audiogram indicates significant residual hearing (50 dB or more for example) up to 2000 Hz, the surgeon could choose to limit insertion depth to 16 mm. The limitation of the insertion depth may take place with the use of a pre-cut biocompatible and sterile tube inserted from the from end of the electrode down to the stopper 2015. A 4 mm long tubing of sufficient thickness in front of a 24 mm long electrode (length from electrode tip to stopper wall) would limit insertion depth to 20 mm.
What distinguishes the electrode 2000 from other designs is the presence of the front end 2007 and back end 2005 on the electrode array 2003. The front end 2007 is much thinner than the back end 2005. In one embodiment, the front end 2007 of the electrode 2000 covers 1/4 to 1/2 of the electrode extent. The bulk mass of front end 2007 of the electrode 2000 may be about 1/2 the bulk mass of the back end. It is understood that in this design the electrode 2000 neither grows continuously, nor is of constant diameter or cross sectional shape along the electrode extent. Rather, the electrode 2000 includes a discontinuity in its cross sectional shape. The discontinuity defines the limit of front end 2007 and the beginning of the back end 2005 of the electrode array 2003. The front end 2007 is designed to have low insertion and low bending forces required to push the array around the coiling, upward spiral geometry of the scala tympani. The back end 2005 is designed to maximize the pushability of the electrode to achieve a deep insertion when required. Pushability is important for electrode design since an electrode with low pushability will collapse around the cochleostomy before able to impart a forward movement to the tip 2011 of the electrode. To favor the insertion of the electrode 2000, the tip 2011 of the device may be thin and rounded with no shaφ edges. In addition the front end 2007 and the back end 2005 of the electrode array 2003 may be tapered. Tapered in this sense means that the cross sectional area of the front end 2007 and back end 2005 grows continuously.
On the electrode extent, eight or more contacts 2009 are embedded or deposited on the polymer substrate. At present, eight contacts 2009 are the minimum required to reach asymptotic performance in speech understanding for implanted patients. The contacts 2009 may be made of platinum (Pt), platinum iridium (Ptlr), or iridium oxide. The contacts 2009 may be round or oval or may be rectangular shaped with rounded edges. Rounded edges reduce the current density at the edges of the electrode contact. Current density at the edge of the contact 2009 surface is usually responsible for the initial contact dissolution of the metallic surface. The contacts 2009 may be in the form of a spherical ball such as that produced by flaming the tip of a platinum iridium wire. Each of the contacts 2009 may be a single or paired contact. In one embodiment, a combination of paired and single contacts may be used. Contacts 2009 located on the back end 2005 are paired while contacts located on the front end 2007 are unpaired. In this manner the flexibility of the front end 2007 of the electrode is preserved while the pushability of the back end 2005 is maintained. Each contact 2009 is electrically connected to an insulated wire (2201, 2203, 2205, or 2207, shown in Fig. 22) that runs through the polymer matrix forming the electrode 2000. The electrode wires 2201, 2203, 2205, or 2207 are thin down to 15 microns in diameter as thin wires reduce the insertion force. The wires 2201, 2203, 2205, or 2207 are preferably wiggled as shown in Fig. 22. Wiggled wires are much more flexible than straight wires and they require much less force to bend. The frequency and magnitude, and shape of the wiggled wires is adapted to minimize insertion forces.
Fig. 23 is a graphical illustration of an implantable electrode array for delivering fluid to the body of a subject in accordance with another embodiment of the invention. In accordance with this embodiment, an implantable electrode 2300 is designed with an internal channel 2301 for fluid delivery. For example, localized delivery of fluids to the inner ear in the presence of a cochlear implant electrode (see Fig. 24) could maintain spiral ganglions cell count as well as functional characteristics, regenerate dendrites, and promote the preservation of residual hearing. Applications could include delivery of cortico- steroids to prevent inflammation and intra scala tissue growth as well as novel treatment for tinnitus and vertigo. The inclusion of a fluid delivery function with a cochlear implant is therefore a valuable aspect of cochlear implant design.
Fluid delivery is applied through a hollow channel 2301 formed on the electrode lead up to a location intra scala. One to several outlets 2307 may be included between or close to the electrode contacts 2309. The hollow channel 2301 may be connected to an internal micro pump or to a port including a septum for external pumping of pharmacological agent. The micro pump or the port may be located near the implant housing. The method for fabricating the hollow channel 2301 such that it is close to the center or more excentered to the edges of the electrode 2300 includes reverse molding. Again, in reverse molding, to form an internal hollow channel 2301, a place holder is included in the mold prior to injection molding. After injection molding the place holder is removed and a hollow channel is left in its place.
One or more outlets 2307 for the fluid delivery channel 2301 may be located near or in between basal contacts 2309 located on the electrode array 2303. The outlet(s) 2307 for fluid delivery may be coated with a ring of bioactive agent to prevent tissue growth and occlusion of the outlets over time.
Fig. 25 is a graphical illustration of the fluid delivery outlets of the electrode array of Fig. 23. Each single outlet 2307 for fluid delivery includes of two outlet channels 2317 and 2319 180 degrees apart. The two outlet channels 2317 and 2319 are connected either in a rectilinear fashion or they are offset but in each case they are 180 degrees apart. The object of having the two outlet channels 2317 and 2319 180 degrees apart in a electrode for a cochlear implant is to ensure that one outlet channel is always facing the perilymphatic fluid. With one outlet channel of the outlet 2307 facing the basilar membrane or the lateral wall of the scala tympani the possibility of the outlet channel becoming occluded exists. The fluid delivery outlets 2307 may be made of titanium or other metal coated with a pharmaceutical agent, including lubricating coating to prevent occlusion of the openings when the drug is not pumped through the channel 2301. The coated fluid delivery outlets 2307 are embedded into the silicone of the electrode. Fig. 26 is a graphical illustration of an electrode for use in connection with an implantable prosthesis in accordance with a further embodiment of the invention. In accordance with this embodiment, the implant electrode 2600 includes an electrode array 2613 and an electrode lead 2611. The electrode lead 2611 is to be electrically connected to a metal or ceramic housing 2601 containing electronics. The electronics generate a current pulse to be delivered to the electrode contacts. The current pulse travels to the contacts via wires embedded in a polymer matrix. The electrode lead 2611 may optionally be terminated at a right angle.
Modeling of intra cochlear stimulation and animal EABR data indicates that an electrode array positioned close to the inner wall of the scala tympani would be beneficial to the neuro stimulation of cochlea implants. Such electrodes are referred to as perimodiolar electrode. There is a consensus that a perimodiolar electrode would lower psycho-acoustic threshold, increase the dynamic range of stimulation, and reduce channel interaction. Channel interaction may be caused by the field overlap from individual electrodes. Further potential benefits expected from a perimodiolar array include reduced power consumption to drive the implant, reduced side effects for the, patient, implementation of innovative stimulation scheme, and better place coding of frequency. A larger number of electrodes may be effectively used.
Figs. 27-30 illustrate of an implantable electrode array in accordance with another embodiment of the invention. In accordance with this embodiment, the electrode is designed to be displaced toward the inner wall of the scala tympani upward spiraling cavity as shown if Fig. 29. The front end 2707 of the electrode 2700 is unchanged from that described in accordance with Fig. 23. The front end 2707 of the electrode 2700 facilitates deep penetration of the scala tympani with minimum insertion forces. The back end 2705 of the electrode, however, is modified. The back end 2705 of the electrode 2700 is segmented in two parts that are joined together for insertion. After full insertion of the electrode 2700, the two segments 2711 and 2713 situated on the back end 2705 of the electrode array are disconnected by a pull back movement on the segment which comprises the electrode. In this embodiment, the two segments 2711 and 2713 remain connected at the junction of the front end 2707 and back end 2705 of the electrode 2700. When used with a cochlear implant, the two segments 2711 and 2713 also remain connected in a location in the middle ear. The two segments 2711 and 2713 are disconnected in between the two mentioned locations.
For clarity the two segments are referred to as the electrode branch 2713 and a restraining arm 2711. The two segments 2711 and 2713 are and remain connected during the whole insertion process. The preferred method of connecting the segments is via the pressure mating of a rail molded on the electrode branch 2713 with a slot molded on the restraining arm 2711. In a cochlear implant, segments 2711 and 2713 are latter disconnected for the positioning of a section of the electrode branch against or close to the modiolus. The cochlea from a human temporal bone with the electrode and restraining arm in position is shown on Figure 29.
The restraining arm 2711 may include in its mass and along its whole length a platinum (Pt) or a platinum iridium (Ptlr) ribbon or wire 2715, annealed or not annealed, to increases or decrease the rigidity of the restraining arm. Such control of the rigidity of the restraining arm 2711 is important in a cochlear implant to maintain good insertion properties (flexibility) as well as sufficient rigidity for when a retro positioning technique is applied to the electrode branch 2713 to displace the electrode branch 2713 closer to the modiolus. If the restraining arm 2711 is too soft, it will buckle during the retro-positioning technique. The shape of the ribbon 2715 may be that of a rectangle with a ratio of length to width of 2 to 1 (as shown in Fig. 28). The orientation of the ribbon 2715 may be such that the shorter length oriented medial to lateral (from outer wall-inner wall). Such an orientation of the ribbon 2715 in a cochlear implant facilitates the movement of the electrode array 2703 from the base of the scala toward the apex, while reducing movement of the array in the superior direction, toward the fragile tissue of the basilar membrane and organ of Corti. An added advantage of the rectangular shape of the ribbon 2715 is that it maintains the electrode contact facing the modiolus during insertion. The generally rectangular shape of the Ptlr ribbon 2715 may have rounded angles to reduce any cutting into the silicone matrix, which form the restraining arm 2711. The metallic core of the restraining arm 2711 may be modified in all or in parts to increase flexibility or rigidity of the restraining arm 2711 in whole or in part as is deemed necessary to the invention. Modification of the ribbon 2715 may include but is not limited to, heat, chemical, and mechanical treatment of the metal. It is understood that the composition of the restraining arm 2711 is not limited to a combination of silicone and metal, and that other biocompatible polymer such as Teflon may be used in connection with the restraining arm concept.
When used with a cochlear implant, the electrode 2700 may be sequentially inserted, and then the electrode 2700 is positioned toward the inner wall. In a first phase, the electrode array 2703 with the two segments 2711 and 2713 connected is inserted along the outer wall of the scala tympani. In a second phase, the section of the back end 2705 of the electrode array 2703 corresponding preferably to the basal turn of the scala tympani is displaced to come close to or to connect with the inner wall of the same scala tympani. This section is now referred to as the perimodiolar section. The perimodiolar section corresponds preferably to the basal turn of the cochlear because this is where the majority of electro-excitable neural elements are situated. These neural elements (spiral ganglion cells) would benefit the most from more proximal electrode stimulation. The remaining intra cochlear section of the electrode branch 2713 is referred to as the deep insertion section. The deep insertion section is designed to be deeply inserted in the scala tympani but it is not positioned against the inner wall by any voluntary action.
Following the full insertion of the segmented electrode array 2703 into the scala tympani of the cochlea, the restraining arm 2711 is held stationary posterior to the cochleostomy (outside the cochlea) by the surgeon and with some micro-tool such as forceps or tweezers. The electrode branch 2713 is then unmated or disconnected from the restraining arm and retracted out of the scala. This slight pulling of the electrode array 2703 out of the cochlea effectively uncouples the electrode branch 2713 and the restraining arm 2711, except at the point where the two segments converge. It is important to note that at the convergence point the two segments are attached via a metallic rod or ribbon 2715 made of Ptlr 80-20%, for example, such as that supplied by Medwire Sigmund Cohn Corp, Mount Vernon, NY. In one embodiment, the end of the wire or ribbon 2715 fits into a silicone hollow cavity on the electrode branch 2713. Key to the retro-positioning technique is the synergy between the less flexible ribbon 2715 and wire in the core of the restraining arm 2711 and the more flexible electrode branch 2713. An important element of the electrode 2700 is the segmented aspect of the electrode. Another substantial element of the design is the option to connect firmly the two segments 2711 and 2713 for ease of insertion. The firm and yet detachable connection may be established by several means. One means of segment connection is via a rail and a slot having matching dimensions. The electrode branch 2713 and restraining arm 2711 may be pressure mated during manufacturing. The mating of the silicone keeps the electrode and restraining arm connected during insertion.
Another means of connecting the two segments 2711 and 2713 is via an envelope design. If such a design is adopted, the envelope may be round or ellipsoid in shape. It is understood that the mating of the electrode is not restricted to the designs shown and that any mating which is profitable for the connection, insertion, disconnection, and positioning of the electrode is feasible. In accordance with yet another method, the two segments 2711 and 2713 may be connected with a hydrogel which dissolves in the fluid of the inner ear within a few minutes of insertion. The binding of two dissimilar silicones which are dis- connectable may also connect the two segments. The electrode segments 2711 and 2713 have a convergence point so that when the implant needs replacement, the two segments 2711 and 2713 of the electrode array 2703 should be easily dis-connectable. In order to achieve dis-connectability as well as restraining action during retro-positioning, the two segments 2711 and 2713 may be joined by a bare Ptlr ribbon 2715 section, which comes out of the restraining arm 2711 and is lodged snugly or loosely in an oriented silicone cavity molded on the electrode branch 2713. In case of revision surgery, the two segments 2711 and 2713 can be dislocated at their point of convergence by pulling back on the restraining arm 2711 with sufficient force. The cavity may be parallel to the axis of the array or may be oriented in such a way as to provide resistance for retro-positioning. The ribbon or wire 2715, which is used as the spine of the restraining arm 2711, may be terminated as a ball to reduce shaφ edges.
The two segments 2711 and 2713 of the electrode array 2703 may be attached together outside the cochlea. Such attachment may be advantageous to prevent the movement of the electrode branch 2713 in relation to the restraining arm 2711. With respect to a cochlear implant, movement of the electrode branch 2713 post-operatively could lead to a release of the connection of the electrode branch 2713 with the modiolus. The in such an embodiment, the two segments 2711 and 2713 may be attached with a closable titanium clip 2717 seen more clearly in Fig. 30. There are several advantages of the electrodes described above. First, in a cochlear implant, a section of the electrode may be deeply inserted in the cochlear, up to the apex, with minimized forces because of the front end design of the electrode. Additionally, a section of the electrode preferably corresponding to the first turn of the cochlear may be displaced toward to and up to the inner wall of the inner ear cavity. The two segments 2711 and 2713 of the electrode are and remain attached during the insertion process (but are disconnected during the positioning process, post insertion, and by voluntary action). The connection to the modiolus is independent of moφhology and special tools are not required for insertion and positioning.
The front end 2707 of the electrode 2700, for up to a 15 mm length, may be coated with a thin biocompatible lubricating coating 2719. The coating 2719 may be permanent or biodegradable. Lubricating coating reduces the friction between the electrode and the tissue during insertion, therefore reducing insertion forces. Lubricating coating needs to be applied in a restricted front end length of the electrode so that instrument can hold the electrode and push in. The electrode may also be equipped with a stopper (as show in Figs. 20 and 23) located on the outer shell of the polymer electrode. The stopper 2015 is designed to prevent electrode insertion beyond a defined limit. The defined insertion limit is from 18 mm to 31 mm. The stopper 2015 may be made of a polymer material such as silicone, and preferably of the same material as the electrode. A polymer tube such as silicone can be inserted in front of the stopper 2015 to limit the electrode insertion to a pre-defined limit which may be adapted tot the audiogram of the individual patient. The shape of the stopper 2015 may be such that it allows the surgeon to see beyond the stopper 2015 through slits manufactured on the stopper 2015. Further, a marker 2721 may be placed on the electrode array 2703 toward the back of the array to indicate the direction of the contact line and to therefore indicate how to maintain the contact orientation once all contacts 2709 have disappeared in the cochlea.
In yet another embodiment, the implantable electrodes may have an impermeable connector (as at 2313 of Fig. 23 or 2723 of Fig. 27) between the distal and proximal end of the electrode. A connector is desirable since multiple re-implantations are likely to occur during the lifetime of the patient. Re-implantation is usually caused by electronic failures in the housing part of the implant and do not implicate the electrode itself. With respect to cochlear implants, each re-implantation with the removal of the electrode array from the inner ear is likely to inflict some additional damage and trauma to the internal tissue of the inner ear. Since trauma may be cumulative, inner ear function such as spiral ganglion cells and nerve tissue survival may decline over time. The use of an impermeable connector 2313 or 2723 suppresses cumulative trauma due to re-implantation since with a connector re-implantation only requires removal of the implantable electronics when such electronics failed. Such connector 2313 or 2723 is preferably located in the middle ear cavity or in the mastoidectomy. The connector 2313 or 2723 may also be placed on the surface of the skull close to the housing, which contains the encapsulated electronics.
The connector 2313 or 2713 should be impermeable to fluid penetration. The function of impermeability may be brought about by pressure mating of a male and female connector or a flat bed connector. Impermeability may also be imparted by the use of a fast curing elastomer or other synthetic material pasted around the two connector parts. Curing causes sealing of the connector part and insulation from moisture. The connector ideally has as many leads as there are electrode channels. For a cochlear implant, the location of the connector 2313 or 2723 may be in the middle ear, in the mastoidectomy, or on the implant housing. Fig. 31 is graphical illustration of a further apparatus for delivering fluid to the body of a subject in accordance with a further embodiment of the invention. The apparatus includes a fluid reservoir 3103 with septum 3101 and a catheter 3107. The apparatus connects the inner surface of the skin of a human or animal subject with a fluid filled non- vascular organ in the human body and permits injection of fluids or pharmaceutical solutions topically to the particular organ though the flexible polymer catheter 3107 which is terminated by a metallic hollow needle 3109 (shown in detail in Fig. 32). The fluid reservoir 3103 and septum 3101 may be driven by an external or by an implantable pump. The apparatus may include a bacterial filter and/or flow restrictor 3105 disposed between the reservoir 3103 and catheter 3107. In accordance with a related embodiment, the apparatus may also include a donut or ringed shaped gold covered magnet (not shown) on the inner skin surface of the reservoir 3103 for positioning a needle on top of the septum 3101. Such a magnet may be encapsulated in a layer of silicone continuous with silicone covering the reservoir 3103. Further, the inner surface of the catheter 3107 and the exit needle 3109 may be coated with hydrophobic or hydrophillic conformal coating to prevent or restrict fibrous tissue growth and prevent biofilm formation. The exit needle 3109 may have an outlet at its tip or at its sides. Such an apparatus may be connected to the inner ear, the bladder, the stomach, or the intestines of a human or animal subject. When connected to the inner ear of a subject, the needle 3109 may be partially inserted in the posterior tympanotomy or in the mastoidectomy.
As noted above, the reservoir 3103 may be metallic and silicone covered. The reservoir may also be conically shaped and the septum 3101 may be disposed on the greater diameter of the cone. When connected to the inner ear of a subject, such a conically shaped reservoir should be of dimensions adequate to snugly fit in a mastoidectomy, such that the non-septum side of the reservoir 3103 is connected to a catheter 3107. The catheter 3107 terminates on the outer side of needle 3109. As shown in Fig. 32, the needle 3109 may be designed to be introduced on the promontory bone or in the semicircular canal of the inner ear after partial thinning of the bone. The needle 3109 may include a barbed outer surface and an anchoring device 3201 for providing bone anchoring. The needle 3109 may also include a conical stopper 3113 located at a short distance from the tip of the needle.
Fig. 33 is a graphical illustration of an implantable access port which may be used with the embodiments of Figs. 31 and 32. The access port includes an input septum 3301 which may be made of compressed silicone, a micro-reservoir 3303 and a port needle 3307. The port needle 3307 may be anchored to the access port with metallic rings 3305 embedded in the silicone. The port needle 3307 may be partially covered with silicone and may have an outlet in its tip or in a side surface. The port needle 3307 may be introduced in the fluid of the inner ear after partial removal of the bony cover with a drill. In accordance with related embodiments, the port needle 3107 may be partially inserted in the posterior tympanotomy with the input septum 3301 and micro-reservoir 3303 in the mastoidectomy.
Fig. 34 is a graphical illustration showing that the implantable access port may be connected to the apparatus described with respect to Fig. 31 and/or the needle described and shown in Fig. 32. As noted above, the invention and its embodiments described herein are not limited to application to the inner ear. Other applications, such as anywhere in the body where it is desirable to have a pump and a delivery catheter with or without electrical stimulation, are also possible with the use of this connecting system. For instance, it may be that such a connection is made on or in the skull at a preferred location for fluid delivery to some location in the brain.
While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modification. This application is intended to cover any variation, uses, or adaptations of the invention and including such departures from the present disclosure as come within known or customary practice in the art to which invention pertains.
01941/156WO 223937.1

Claims (63)

What is claimed is:
1. A fluid delivery system comprising: an implantable fluid source; a first catheter in fluid communication with the implantable fluid source; and an implantable micro-valve in fluid communication with the first catheter.
2. A fluid delivery system according to claim 1, wherein the implantable fluid source includes a reservoir.
3. A fluid delivery system according to claim 2, wherein the reservoir is refillable.
4. A fluid delivery system according to claim 1, wherein the implantable fluid source includes a pump.
5. A fluid delivery system according to claim 4, wherein the pump is an osmotic pump.
6. A fluid delivery system according to claim 1, further comprising a second catheter in fluid communication with the implantable micro-valve.
7. A fluid delivery system according to claim 1, where in the implantable micro-valve includes a magnet.
8. A fluid delivery system according to claim 1, wherein the implantable micro-valve is self-closing.
9. A fluid delivery system according to claim 1 , further comprising a switch for stopping fluid flow through the system.
10. A fluid delivery system according to claim 1, further comprising an electrode in communication with the fluid source.
11. A fluid delivery system according to claim 1, further comprising an electrode in communication with the first catheter.
12. A fluid delivery system according to claim 1, further comprising a cochlear implant in communication with the fluid source.
13. A fluid delivery system according to claim 1, further comprising a cochlear implant in communication with the first catheter.
14. A fluid delivery system comprising: an implantable fluid source; and an implantable micro-valve in fluid communication with the fluid source.
15. A fluid delivery system according to claim 14, wherein the fluid source is a canister which may be removed from the system.
16. An electrode for an implantable prosthesis, the electrode comprising: a flexible front end including one or more metal contacts; and a back end including one or more metal contacts wherein the flexible front end is substantially thinner than the back end such that forces required to introduce the flexible front end to soft tissue are minimal.
17. An electrode according to claim 16, wherein the flexible front end and the back end are comprised of a polymer matrix.
18. An electrode according to claim 17, wherein each of the metal contacts is connected to a wire that runs through the polymer matrix.
19. An electrode according to claim 16, wherein the flexible front end comprises about one half the mass of the back end.
20. An electrode according to claim 16, further comprising one or more fluid outlets.
21. An electrode according to claim 20, wherein each of the one or more fluid outlets is in communication with at least two fluid channels.
22. An electrode according to claim 16, wherein the back end includes at least two segments, the two segments being fully connected to one another prior to implantation and at least partially disconnected from one another following implantation.
23. An electrode according to claim 16, further comprising a stopper disposed upon an outer wall of the electrode for limiting the extent of implantation.
24. An electrode according to claim 16, further comprising a connector disposed between the flexible front end and the back end such that the flexible front end may be separated from the back end.
25. A cochlear implant comprising: an implantable housing, the implantable housing including an current source; an electric lead in communication with the current source, the electric lead including a fluid delivery channel; and an electrode array, the electrode array including one or more fluid outlets is in communication with the fluid delivery channel.
26. An implantable catheter for fluid delivery comprising: a flexible polymer based housing having an internal channel in fluid communication with an implantable fluid source; and one or more outlets disposed on the housing, each of the outlets including at least two outlet channels.
27. An implantable catheter according to claim 26, further comprising an adjustable blocker for closing an incision through which the catheter is inserted.
28. An implantable catheter according to claim 26, further comprising a reinforcing filament for increasing ease of implantation.
29. An implantable catheter according to claim 28, wherein the reinforcing filament includes a wire.
30. An implantable catheter according to claim 28, wherein the reinforcing filament includes a hardened polymer.
31. A micro-septum connector comprising: an implantable port connector having a septum; and an implantable spear connector having a needle for insertion into the septum.
32. A micro-septum connector according to claim 31 , wherein the implantable port connector comprises: a fluid source in fluid communication with the needle; a compression ring for compressing the septum; and a mechanism for guiding the needle as it is inserted into the septum.
33. A micro-septum connector according to claim 31, further comprising: a stopping device for preventing direct contact between the implantable port connector and the implantable spear connector; and a locking device for preventing disengagement of the needle from the septum.
34. A micro-septum connector according to claim 31 , further comprising: a port catheter in fluid communication with the implantable port connector.
35. A micro-septum connector according to claim 34, further comprising: a bacterial filter disposed between the fluid source and port catheter.
36. A micro-septum connector according to claim 34, further comprising: a bacterial filter disposed between the implantable port connector and the port catheter.
37. A micro-septum connector according to claim 31, further comprising: a spear catheter in fluid communication with the needle.
38. An apparatus for delivering fluid to the body of a subject comprising: an implantable fluid source; a first catheter in fluid communication with the fluid source; and a micro-septum connector, the micro-septum connector comprising: an implantable spear connector in communication with the first catheter, the implantable spear connector including a needle; and an implantable port connector having a septum into which the needle is inserted.
39. An apparatus according to claim 38, further comprising: a second catheter in fluid communication with the implantable port connector.
40. An apparatus according to claim 38, wherein the fluid source is a fluid pump.
41. An apparatus according to claim 38, wherein the fluid source is a reservoir.
42. An apparatus for delivering fluid to the body of a subject comprising: a first catheter in fluid communication with a fluid source; a micro-septum connector, the micro-septum connector including an implantable spear connector in communication with the first catheter, the implantable spear connector including a needle, and an implantable port connector having a septum into which the needle is inserted; a second catheter in fluid communication with the implantable port connector; and an implantable electronic prosthesis having one or more fluid channels is in fluid communication with the second catheter.
43. An apparatus for delivering fluid to the inner ear of a subject comprising: a first catheter in fluid communication with a fluid source; a micro-septum connector, the micro-septum connector including an implantable spear connector in communication with the first catheter, the implantable spear connector including a needle, and an implantable port connector having a septum into which the needle is inserted; and a fixation device for affixing the implantable port connector to the inner ear of a subject.
44. An apparatus according to claim 43, further comprising: a second catheter in fluid communication with the implantable port connector.
45. An apparatus according to claim 44, further comprising: an electrode having one or more fluid channels in fluid communication with the second catheter.
46. An apparatus according to claim 43, wherein the fixation device is affixed to a promontory bone of the subject.
47. An apparatus for delivering fluid to the body of a subject comprising: an implantable fluid reservoir, the implantable fluid reservoir including a first septum; a catheter in fluid communication with the implantable fluid reservoir; and a first needle in fluid communication with the catheter.
48. An apparatus according to claim 47, further comprising: a bacterial filter disposed between the implantable fluid reservoir and the catheter.
49. An apparatus according to claim 47, further comprising: a flow restrictor disposed between the implantable fluid reservoir and the catheter.
50. An apparatus according to claim 47, further comprising: an anchor for affixing the first needle to the catheter.
51. An apparatus according to claim 48, wherein the anchor includes a silicone plug.
52. An apparatus according to claim 48, wherein the anchor includes one or more metal rings.
53. An apparatus according to claim 47, further comprising: an access port in fluid communication with the first needle, the access port comprising: a second septum, the second septum including a micro reservoir; and a second needle in fluid communication with the micro reservoir.
54. An apparatus according to claim 53, further comprising: an anchor for affixing the second needle to the second septum.
55. An apparatus according to claim 54, wherein the anchor includes one or more metal rings.
56. An apparatus according to claim 55, wherein the metal rings are embedded in silicone.
57. An implantable access port for delivering fluid to the body of a subject comprising: an implantable septum, the implantable septum including a micro reservoir; and a needle in fluid communication with the micro-reservoir.
58. An implantable access port according to claim 57, further comprising an anchor for affixing the needle to the implantable septum.
59. An implantable access port according to claim 58, wherein the anchor includes one or more metal rings.
60. An implantable access port according to claim 59, wherein the metal rings are embedded in silicone.
61. An implantable fluid source for delivery of fluid to the body of a subject comprising: an implantable fluid reservoir, the implantable fluid reservoir having at least one fluid channel; and a septum in fluid communication with the at least one fluid channel.
62. An implantable fluid source according to claim 61 , further comprising: a bacterial filter in fluid communication with the at least one fluid channel.
63. An implantable fluid source according to claim 61, further comprising: a flow constrictor in fluid communication with the at least one fluid channel.
01941/156WO 223937.1
AU2002363103A 2001-10-24 2002-10-24 Implantable fluid delivery apparatuses and implantable electrode Expired AU2002363103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2009200181A AU2009200181B2 (en) 2001-10-24 2009-01-16 Implantable fluid delivery apparatuses and implantable electrode

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US33645201P 2001-10-24 2001-10-24
US60/336,452 2001-10-24
US39442702P 2002-07-08 2002-07-08
US60/394,427 2002-07-08
US39460202P 2002-07-09 2002-07-09
US60/394,602 2002-07-09
US41770402P 2002-10-10 2002-10-10
US60/417,704 2002-10-10
PCT/IB2002/004731 WO2003034960A1 (en) 2001-10-24 2002-10-24 Implantable fluid delivery apparatuses and implantable electrode

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2009200181A Division AU2009200181B2 (en) 2001-10-24 2009-01-16 Implantable fluid delivery apparatuses and implantable electrode

Publications (2)

Publication Number Publication Date
AU2002363103A1 true AU2002363103A1 (en) 2003-07-03
AU2002363103B2 AU2002363103B2 (en) 2008-10-16

Family

ID=27502541

Family Applications (3)

Application Number Title Priority Date Filing Date
AU2002363103A Expired AU2002363103B2 (en) 2001-10-24 2002-10-24 Implantable fluid delivery apparatuses and implantable electrode
AU2009200181A Expired AU2009200181B2 (en) 2001-10-24 2009-01-16 Implantable fluid delivery apparatuses and implantable electrode
AU2010202239A Expired AU2010202239B2 (en) 2001-10-24 2010-05-31 Implantable fluid delivery apparatuses and implantable electrode

Family Applications After (2)

Application Number Title Priority Date Filing Date
AU2009200181A Expired AU2009200181B2 (en) 2001-10-24 2009-01-16 Implantable fluid delivery apparatuses and implantable electrode
AU2010202239A Expired AU2010202239B2 (en) 2001-10-24 2010-05-31 Implantable fluid delivery apparatuses and implantable electrode

Country Status (6)

Country Link
US (6) US7044942B2 (en)
EP (3) EP2226043B1 (en)
JP (1) JP4398728B2 (en)
AU (3) AU2002363103B2 (en)
CA (1) CA2460676C (en)
WO (1) WO2003034960A1 (en)

Families Citing this family (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8177762B2 (en) 1998-12-07 2012-05-15 C. R. Bard, Inc. Septum including at least one identifiable feature, access ports including same, and related methods
JP2001169067A (en) * 1999-12-10 2001-06-22 Ricoh Co Ltd Device and method for image processing and computer readable storage medium with program making computer perform the method stored therein
US9089450B2 (en) * 2000-11-14 2015-07-28 Cochlear Limited Implantatable component having an accessible lumen and a drug release capsule for introduction into same
AUPR148400A0 (en) * 2000-11-14 2000-12-07 Cochlear Limited Apparatus for delivery of pharmaceuticals to the cochlea
US7702394B2 (en) 2001-05-01 2010-04-20 Intrapace, Inc. Responsive gastric stimulator
JP4398728B2 (en) * 2001-10-24 2010-01-13 メド−エル・エレクトロメディツィニシェ・ゲラーテ・ゲーエムベーハー Implantable fluid delivery device and implantable electrode
US20070088335A1 (en) * 2001-10-24 2007-04-19 Med-El Elektromedizinische Geraete Gmbh Implantable neuro-stimulation electrode with fluid reservoir
US20100030130A1 (en) * 2001-11-09 2010-02-04 Cochlear Limited Pharmaceutical intervention for modulation of neural plasticity
AUPR879201A0 (en) * 2001-11-09 2001-12-06 Cochlear Limited Subthreshold stimulation of a cochlea
AUPS081502A0 (en) * 2002-02-28 2002-03-21 Cochlear Limited Connector for drug delivery system
US7867193B2 (en) 2004-01-29 2011-01-11 The Charles Stark Draper Laboratory, Inc. Drug delivery apparatus
US7009502B2 (en) 2002-08-26 2006-03-07 Automotive Technologies International, Inc. Method for controlling output of a classification algorithm
US7319906B2 (en) * 2002-09-19 2008-01-15 Advanced Bionics Corporation Cochlear implant electrode and method of making same
EP1539295A2 (en) * 2002-09-19 2005-06-15 Advanced Bionics Corporation Cochlear implant electrode and method of making same
US7014636B2 (en) * 2002-11-21 2006-03-21 Alza Corporation Osmotic delivery device having a two-way valve and a dynamically self-adjusting flow channel
WO2004050056A1 (en) * 2002-11-29 2004-06-17 Cochlear Limited Cochlear implant drug delivery device
US7351246B2 (en) * 2004-01-20 2008-04-01 Epley John M Minimally invasive, sustained, intra-tympanic drug delivery system
US7867194B2 (en) 2004-01-29 2011-01-11 The Charles Stark Draper Laboratory, Inc. Drug delivery apparatus
AU2005212341B2 (en) * 2004-02-10 2011-11-24 Synecor, Llc. Intravascular delivery system for therapeutic agents
US7706873B2 (en) * 2004-05-05 2010-04-27 Mario Ammirati System and method for controlled delivery of a therapeutic agent to a target location within an internal body tissue
US20060036324A1 (en) * 2004-08-03 2006-02-16 Dan Sachs Adjustable spinal implant device and method
WO2006078924A2 (en) * 2005-01-20 2006-07-27 Epley Medical Llc Minimally invasive, sustained, intra-tympanic drug delivery system
EP1861161A4 (en) * 2005-01-24 2012-05-16 Neurosystec Corp Apparatus and method for delivering therapeutic and/or other agents to the inner ear and to other tissues
US11246913B2 (en) 2005-02-03 2022-02-15 Intarcia Therapeutics, Inc. Suspension formulation comprising an insulinotropic peptide
US7947022B2 (en) 2005-03-04 2011-05-24 C. R. Bard, Inc. Access port identification systems and methods
US9474888B2 (en) 2005-03-04 2016-10-25 C. R. Bard, Inc. Implantable access port including a sandwiched radiopaque insert
EP1858565B1 (en) 2005-03-04 2021-08-11 C.R. Bard, Inc. Access port identification systems and methods
US8029482B2 (en) 2005-03-04 2011-10-04 C. R. Bard, Inc. Systems and methods for radiographically identifying an access port
US20110077579A1 (en) * 2005-03-24 2011-03-31 Harrison William V Cochlear implant with localized fluid transport
US8078275B2 (en) * 2005-04-15 2011-12-13 Functional Neuromodulation Inc. Regulation of neurotrophins
US8147455B2 (en) 2005-04-27 2012-04-03 C. R. Bard, Inc. Infusion apparatuses and methods of use
US10307581B2 (en) 2005-04-27 2019-06-04 C. R. Bard, Inc. Reinforced septum for an implantable medical device
EP2939703B1 (en) 2005-04-27 2017-03-01 C. R. Bard, Inc. Infusion apparatuses and related methods
WO2006127123A2 (en) * 2005-05-20 2006-11-30 Medtronic, Inc. Locking catheter connector and method
EP1901798B1 (en) * 2005-05-20 2013-05-22 Medtronic, Inc. Squeeze-actuated catheter connector and method
US20060280655A1 (en) * 2005-06-08 2006-12-14 California Institute Of Technology Intravascular diagnostic and therapeutic sampling device
US8805547B2 (en) * 2005-06-30 2014-08-12 Domestic Legacy Limited Partnership Extra-cochlear implanted hearing aid device
WO2007030743A2 (en) 2005-09-08 2007-03-15 Massachusetts Eye & Ear Infirmary Cochlear implants containing biological cells and uses thereof
US20100331913A1 (en) * 2005-10-28 2010-12-30 Mann Alfred E Hybrid multi-function electrode array
DE102006009424A1 (en) * 2006-02-24 2007-09-06 Universität Rostock Electrohydrodynamic micropump and its use
AR059786A1 (en) * 2006-03-09 2008-04-30 Med El Elektromed Geraete Gmbh CONFIGURATION OF COCLEAR IMPLANT ELECTRODE TO ELECT PHARMACOS
US7650194B2 (en) * 2006-03-22 2010-01-19 Fritsch Michael H Intracochlear nanotechnology and perfusion hearing aid device
US8267905B2 (en) * 2006-05-01 2012-09-18 Neurosystec Corporation Apparatus and method for delivery of therapeutic and other types of agents
US7803148B2 (en) 2006-06-09 2010-09-28 Neurosystec Corporation Flow-induced delivery from a drug mass
US7706888B2 (en) * 2006-07-14 2010-04-27 Med-El Elektromedizinische Geraete Gmbh Bi-planar electrode with shunting gates
US7720542B2 (en) * 2006-07-17 2010-05-18 Med-El Elektromedizinische Geraete Gmbh Remote sensing and actuation of fluid in cranial implants
US8128551B2 (en) 2006-07-17 2012-03-06 Med-El Elektromedizinische Geraete Gmbh Remote sensing and actuation of fluid of inner ear
US20080145439A1 (en) * 2006-07-31 2008-06-19 Neurosystec Corporation Nanoparticle drug formulations
EP2049081B1 (en) 2006-08-09 2012-11-14 Intarcia Therapeutics, Inc. Osmotic delivery systems and piston assemblies
US20080065002A1 (en) * 2006-09-07 2008-03-13 Neurosystec Corporation Catheter for Localized Drug Delivery and/or Electrical Stimulation
US9265912B2 (en) 2006-11-08 2016-02-23 C. R. Bard, Inc. Indicia informative of characteristics of insertable medical devices
US9642986B2 (en) 2006-11-08 2017-05-09 C. R. Bard, Inc. Resource information key for an insertable medical device
US9046192B2 (en) 2007-01-31 2015-06-02 The Charles Stark Draper Laboratory, Inc. Membrane-based fluid control in microfluidic devices
US7844345B2 (en) * 2007-02-08 2010-11-30 Neuropace, Inc. Drug eluting lead systems
US7813811B2 (en) 2007-02-08 2010-10-12 Neuropace, Inc. Refillable reservoir lead systems
US9402990B2 (en) 2007-03-20 2016-08-02 Cochlear Limited Securing an implanted medical device in a patient
PT2157967E (en) 2007-04-23 2013-04-03 Intarcia Therapeutics Inc Suspension formulations of insulinotropic peptides and uses thereof
WO2008150974A1 (en) * 2007-06-01 2008-12-11 Med-El Elektromedizinische Geraete Gmbh Biodegradable flexible coating for implantable medical devices
EP2164559B1 (en) 2007-06-20 2017-10-25 Medical Components, Inc. Venous access port with molded and/or radiopaque indicia
WO2009012395A1 (en) 2007-07-19 2009-01-22 Innovative Medical Devices, Llc Venous access port assembly with x-ray discernable indicia
MX2010000703A (en) 2007-07-19 2010-07-29 Medical Components Inc Venous access port assembly with x-ray discernable indicia.
US8133215B2 (en) * 2007-08-13 2012-03-13 Cochlear Limited Independently-manufactured drug delivery module and corresponding receptacle in an implantable medical device
US8366652B2 (en) 2007-08-17 2013-02-05 The Invention Science Fund I, Llc Systems, devices, and methods including infection-fighting and monitoring shunts
US8190271B2 (en) 2007-08-29 2012-05-29 Advanced Bionics, Llc Minimizing trauma during and after insertion of a cochlear lead
US8271101B2 (en) 2007-08-29 2012-09-18 Advanced Bionics Modular drug delivery system for minimizing trauma during and after insertion of a cochlear lead
US20130079749A1 (en) * 2007-08-29 2013-03-28 Advanced Bionics, Llc Modular Drug Delivery System for Minimizing Trauma During and After Insertion of a Cochlear Lead
US9579496B2 (en) 2007-11-07 2017-02-28 C. R. Bard, Inc. Radiopaque and septum-based indicators for a multi-lumen implantable port
WO2009092067A2 (en) * 2008-01-18 2009-07-23 Neurosystec Corporation Valveless impedance pump drug delivery systems
US8343140B2 (en) 2008-02-13 2013-01-01 Intarcia Therapeutics, Inc. Devices, formulations, and methods for delivery of multiple beneficial agents
US8209017B1 (en) 2008-04-16 2012-06-26 Boston Scientific Neuromodulation Corporation Septum for covering a fastener assembly on a connector of an implantable electric stimulation system and methods of making and using
US8301260B2 (en) * 2008-08-13 2012-10-30 Daglow Terry D Method of implanting a medical implant to treat hearing loss in a patient, devices for faciliting implantation of such devices, and medical implants for treating hearing loss
WO2010022314A1 (en) * 2008-08-21 2010-02-25 Med-El Elektromedizinische Geraete Gmbh Multipath stimulation hearing systems
EP2341858B1 (en) 2008-10-01 2014-02-12 Sherwin Hua System for wire-guided pedicle screw stabilization of spinal vertebrae
US8718785B2 (en) * 2008-10-08 2014-05-06 Med-El Elektromedizinische Geraete Gmbh Cochlear tissue protection from electrode trauma
WO2010045432A2 (en) * 2008-10-15 2010-04-22 Med-El Elektromedizinische Geraete Gmbh Inner ear drug delivery device and method
WO2010051494A1 (en) 2008-10-31 2010-05-06 C.R. Bard, Inc. Systems and methods for identifying an acess port
CA2743252A1 (en) * 2008-11-10 2010-05-14 Med-El Elektromedizinische Geraete Gmbh Implantable and refillable drug delivery reservoir
CN102271754B (en) * 2008-11-10 2014-07-16 Med-El电气医疗器械有限公司 Hydrogel-filled drug delivery reservoirs
US9795442B2 (en) 2008-11-11 2017-10-24 Shifamed Holdings, Llc Ablation catheters
US8932271B2 (en) 2008-11-13 2015-01-13 C. R. Bard, Inc. Implantable medical devices including septum-based indicators
US11890443B2 (en) 2008-11-13 2024-02-06 C. R. Bard, Inc. Implantable medical devices including septum-based indicators
US20110295089A1 (en) 2008-12-04 2011-12-01 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems, devices, and methods including implantable devices with anti-microbial properties
JP5554349B2 (en) * 2009-02-06 2014-07-23 メド−エル エレクトロメディジニシェ ゲラテ ゲーエムベーハー Embedded electrode with variable mechanical adjustment wiring
AU2009202253A1 (en) * 2009-03-24 2011-09-08 Advanced Bionics Ag Fully or partially implantable hearing system
EP2413785A4 (en) 2009-04-03 2014-12-10 Intrapace Inc Feedback systems and methods to enhance obstructive and other obesity treatments
US8715244B2 (en) 2009-07-07 2014-05-06 C. R. Bard, Inc. Extensible internal bolster for a medical device
CA2775676C (en) 2009-09-28 2016-08-16 Intarcia Therapeutics, Inc. Rapid establishment and/or termination of substantial steady-state drug delivery
US20110093051A1 (en) * 2009-10-21 2011-04-21 Medtronic, Inc. Assignment and manipulation of implantable leads in different anatomical regions with image background
US9079004B2 (en) 2009-11-17 2015-07-14 C. R. Bard, Inc. Overmolded access port including anchoring and identification features
US9179875B2 (en) 2009-12-21 2015-11-10 Sherwin Hua Insertion of medical devices through non-orthogonal and orthogonal trajectories within the cranium and methods of using
US20110202120A1 (en) * 2010-02-16 2011-08-18 Med-El Elektromedizinische Geraete Gmbh Electrode Design for Reduced Trauma Insertion
US8840601B2 (en) * 2010-03-24 2014-09-23 Shifamed Holdings, Llc Intravascular tissue disruption
US8909348B2 (en) 2010-03-30 2014-12-09 Domestic Legacy Limited Partnership Cochlear implant stabilization and positioning device
US9814885B2 (en) 2010-04-27 2017-11-14 Medtronic, Inc. Stimulation electrode selection
US9655677B2 (en) 2010-05-12 2017-05-23 Shifamed Holdings, Llc Ablation catheters including a balloon and electrodes
WO2011143468A2 (en) 2010-05-12 2011-11-17 Shifamed, Llc Low profile electrode assembly
US8617097B2 (en) 2010-05-24 2013-12-31 Cochlear Limited Drug-delivery accessory for an implantable medical device
EP2605761A1 (en) * 2010-08-19 2013-06-26 INSERM (Institut National de la Santé et de la Recherche Médicale) Device that is implantable in the temporal bone for delivering a material, and hearing aid provided with such a device
WO2012045030A2 (en) 2010-10-01 2012-04-05 Intrapace, Inc. Feedback systems and methods to enhance obstructive and other obesity treatments, optionally using multiple sensors
US9333331B2 (en) * 2010-11-08 2016-05-10 Cendres+Metaux Sa Method for implanting an access port
USD682416S1 (en) 2010-12-30 2013-05-14 C. R. Bard, Inc. Implantable access port
USD676955S1 (en) 2010-12-30 2013-02-26 C. R. Bard, Inc. Implantable access port
EP2670456B1 (en) 2011-02-02 2019-12-18 The Charles Stark Draper Laboratory, Inc. Drug delivery apparatus
US20120208755A1 (en) 2011-02-16 2012-08-16 Intarcia Therapeutics, Inc. Compositions, Devices and Methods of Use Thereof for the Treatment of Cancers
CA2829386A1 (en) * 2011-03-07 2012-09-13 Chris HEDDON Outer ear bone anchor
WO2012134872A1 (en) * 2011-03-25 2012-10-04 Med-El Elektromedizinische Geraete Gmbh Drug delivery electrode with temporary fill tube
US8406890B2 (en) 2011-04-14 2013-03-26 Medtronic, Inc. Implantable medical devices storing graphics processing data
US9011384B2 (en) 2011-06-22 2015-04-21 Chris Heddon Outer ear bone anchor
EP2825244A4 (en) * 2012-03-15 2016-07-27 Med El Elektromed Geraete Gmbh Accessory device for inner ear drug delivery
CN104519926B (en) 2012-07-13 2017-09-22 Med-El电气医疗器械有限公司 Implantable fluid delivery system with floating mass transducer transfer tube
KR101450859B1 (en) 2012-10-10 2014-10-15 한국과학기술연구원 Nerve electrode provided with a antiinflammatory drug and method for manufacturing the same
US20140121656A1 (en) * 2012-10-26 2014-05-01 Warsaw Orthopedic, Inc. Nerve and soft tissue cutting device
US10349824B2 (en) 2013-04-08 2019-07-16 Apama Medical, Inc. Tissue mapping and visualization systems
AU2014251039B2 (en) 2013-04-08 2018-12-06 Apama Medical, Inc. Cardiac ablation catheters and methods of use thereof
US10098694B2 (en) 2013-04-08 2018-10-16 Apama Medical, Inc. Tissue ablation and monitoring thereof
US9480838B2 (en) * 2013-10-15 2016-11-01 Med-El Elektromedizinische Geraete Gmbh Cochlear electrode with apical lateral wall section and basal modiolar hugging section
WO2015164340A1 (en) * 2014-04-21 2015-10-29 University Of South Florida Magnetic resonant imaging safe stylus
US10213564B2 (en) * 2014-05-19 2019-02-26 Frank J. Cain Biomedical aural delivery systems and methods
US9616207B2 (en) 2014-06-26 2017-04-11 Cochlear Limited Treatment of the ear
WO2015200923A2 (en) * 2014-06-27 2015-12-30 The Trustees Of Columbia University In The City Of New York Apparatus for perforation and aspiration of inner ear
US20160000548A1 (en) * 2014-07-03 2016-01-07 Elwha Llc Devices, methods, and systems related to expandable implants
US9889085B1 (en) 2014-09-30 2018-02-13 Intarcia Therapeutics, Inc. Therapeutic methods for the treatment of diabetes and related conditions for patients with high baseline HbA1c
TWI580279B (en) * 2015-05-14 2017-04-21 陳光超 Cochlea hearing aid fixed on ear drum
RU2730996C2 (en) 2015-06-03 2020-08-26 Интарсия Терапьютикс, Инк. Implant installation and extraction systems
EP3322475B1 (en) * 2015-07-15 2022-09-14 MED-EL Elektromedizinische Geräte GmbH Electrode lead that avoids electrode array migration from the cochlea
EP3376936B1 (en) 2015-11-16 2024-01-03 Boston Scientific Scimed, Inc. Energy delivery devices
TWI814219B (en) 2016-05-16 2023-09-01 美商因塔希亞治療公司 Glucagon-receptor selective polypeptides and methods of use thereof
US11213430B2 (en) 2016-05-26 2022-01-04 Cochlear Limited Inner ear plug
USD840030S1 (en) 2016-06-02 2019-02-05 Intarcia Therapeutics, Inc. Implant placement guide
USD860451S1 (en) 2016-06-02 2019-09-17 Intarcia Therapeutics, Inc. Implant removal tool
CA3049034A1 (en) 2017-01-03 2018-07-12 Intarcia Therapeutics, Inc. Methods comprising continuous administration of a glp-1 receptor agonist and co-adminstration of a drug
WO2019058333A2 (en) 2017-09-22 2019-03-28 Cochlear Limited Bioactive agent distribution
US11806492B2 (en) * 2017-09-22 2023-11-07 Cochlear Limited Trans middle ear-inner ear fluid flow implementations
US12070575B2 (en) * 2017-10-12 2024-08-27 Cochlear Limited Clinical-based automated delivery of treatment substances to the inner ear
EP3706857B1 (en) * 2017-11-10 2022-01-19 MED-EL Elektromedizinische Geräte GmbH Navigatable implantable electrode and collapsing lubricant reservoir
EP3746018A1 (en) * 2018-02-02 2020-12-09 Tusker Medical, Inc. Systems, apparatus, and methods for transport and delivery of therapeutic substance to middle ear
KR102198944B1 (en) * 2018-03-16 2021-01-05 의료법인 성광의료재단 Intratympanic drug delivery device and intratympanic drug delivery method using the same
WO2019204653A1 (en) 2018-04-19 2019-10-24 Spiral Therapeutics, Inc. Inner ear drug delivery devices and methods of use
USD933219S1 (en) 2018-07-13 2021-10-12 Intarcia Therapeutics, Inc. Implant removal tool and assembly
EP3840827A4 (en) * 2018-08-24 2022-05-18 Cochlear Limited Mass transport inside mammals
WO2020104918A1 (en) 2018-11-20 2020-05-28 Cochlear Limited Selectable drug delivery rate device
US11160580B2 (en) 2019-04-24 2021-11-02 Spine23 Inc. Systems and methods for pedicle screw stabilization of spinal vertebrae
US11730884B2 (en) * 2019-09-05 2023-08-22 Forcast Orthopedics Inc. Implantable externally driven fluid delivery system
US11890438B1 (en) * 2019-09-12 2024-02-06 Cochlear Limited Therapeutic substance delivery
CN110801574A (en) * 2019-11-12 2020-02-18 江苏诺尔贝斯医疗科技有限公司 Medical connector
AU2021211707A1 (en) * 2020-01-24 2022-08-18 Spiral Therapeutics Inc. Devices, systems, and methods for otology
WO2022147085A1 (en) * 2020-12-31 2022-07-07 The Johns Hopkins University Devices and method for the conveyance of fluidic materials
CN117580530A (en) 2021-05-12 2024-02-20 斯拜因23公司 System and method for pedicle screw stabilization of vertebrae
MX2023015148A (en) * 2021-06-30 2024-04-01 Davol Inc Methods and implantable prosthesis for reconstruction and/or augmentation of an anatomical shape.
WO2023135522A1 (en) * 2022-01-11 2023-07-20 Cochlear Limited Inner ear access shaped devices and methods
WO2023212530A1 (en) * 2022-04-25 2023-11-02 Evanesce Medical, Inc. Multimultimodal pain management systems and methods
WO2024038420A1 (en) * 2022-08-19 2024-02-22 Cochlear Limited Substance delivery inside mammals

Family Cites Families (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US419677A (en) * 1890-01-21 Protecting-plate for grip-cars
US3277893A (en) * 1964-01-31 1966-10-11 Becton Dickinson Co Hypodermic projectile with barb in the cannula bevel
US4207554A (en) * 1972-08-04 1980-06-10 Med-El Inc. Method and apparatus for automated classification and analysis of cells
US4125828A (en) * 1972-08-04 1978-11-14 Med-El Inc. Method and apparatus for automated classification and analysis of cells
US4053952A (en) * 1975-10-10 1977-10-18 The United States Of America As Represented By The Secretary Of The Department Of Health, Education And Welfare Magnetic fluid actuated control valve, relief valve and pump
US4573994A (en) * 1979-04-27 1986-03-04 The Johns Hopkins University Refillable medication infusion apparatus
US4400590A (en) * 1980-12-22 1983-08-23 The Regents Of The University Of California Apparatus for multichannel cochlear implant hearing aid system
US4419995A (en) * 1981-09-18 1983-12-13 Hochmair Ingeborg Single channel auditory stimulation system
US4588394A (en) * 1984-03-16 1986-05-13 Pudenz-Schulte Medical Research Corp. Infusion reservoir and pump system
GB8618253D0 (en) * 1986-07-25 1986-09-03 Wallace Ltd H G Intermittent administration of therapeutic substance
DE3876565T2 (en) * 1987-08-25 1993-04-08 Infusaid Inc IMPLANTABLE DEVICE.
FR2629710B1 (en) * 1988-04-08 1997-10-24 Mxm ELECTRODE HOLDER DEVICES IMPLANTABLE IN THE COCHLEE FOR ELECTRICALLY STIMULATING THE HEARING NERVE
DE3821970C1 (en) * 1988-06-29 1989-12-14 Ernst-Ludwig Von Dr. 8137 Berg De Wallenberg-Pachaly
US5458631A (en) * 1989-01-06 1995-10-17 Xavier; Ravi Implantable catheter with electrical pulse nerve stimulators and drug delivery system
US5119832A (en) * 1989-07-11 1992-06-09 Ravi Xavier Epidural catheter with nerve stimulators
DE58903472D1 (en) 1989-08-09 1993-03-18 Siemens Ag IMPLANTABLE INJECTION BODY.
US5356381A (en) * 1990-03-01 1994-10-18 Ensminger William D Implantable access devices
US5087243A (en) 1990-06-18 1992-02-11 Boaz Avitall Myocardial iontophoresis
US5421818A (en) * 1993-10-18 1995-06-06 Inner Ear Medical Delivery Systems, Inc. Multi-functional inner ear treatment and diagnostic system
US5928229A (en) * 1993-11-08 1999-07-27 Rita Medical Systems, Inc. Tumor ablation apparatus
US6129685A (en) * 1994-02-09 2000-10-10 The University Of Iowa Research Foundation Stereotactic hypothalamic obesity probe
US5697975A (en) * 1994-02-09 1997-12-16 The University Of Iowa Research Foundation Human cerebral cortex neural prosthetic for tinnitus
US5843093A (en) * 1994-02-09 1998-12-01 University Of Iowa Research Foundation Stereotactic electrode assembly
US5607407A (en) * 1994-05-09 1997-03-04 Tolkoff; Marc J. Catheter assembly
US5509888A (en) * 1994-07-26 1996-04-23 Conceptek Corporation Controller valve device and method
EP0818123B1 (en) * 1995-03-30 2003-01-15 Cochlear Limited Cochlear electrode implant assemblies with positioning system therefor
WO1996033761A1 (en) * 1995-04-28 1996-10-31 Medtronic, Inc. Intraparenchymal infusion catheter system
US5800500A (en) * 1995-08-18 1998-09-01 Pi Medical Corporation Cochlear implant with shape memory material and method for implanting the same
AU702746B2 (en) * 1995-09-20 1999-03-04 Cochlear Limited Bioresorbable polymer use in cochlear and other implants
ES2247624T3 (en) * 1996-02-26 2006-03-01 Med-El Elektromedizinische Gerate Gmbh STRUCTURE OF AN IMPLANTED AUDITIVE PROTESIS.
JP3637497B2 (en) * 1996-03-13 2005-04-13 メド―エル・エレクトロメディツィニシェ・ゲラーテ・ゲーエムベーハー Method and apparatus for embedding in a cured cochlea
US5697951A (en) * 1996-04-25 1997-12-16 Medtronic, Inc. Implantable stimulation and drug infusion techniques
JP2002512000A (en) * 1996-06-04 2002-04-16 メド―エル・エレクトロメディツィニシェ・ゲラーテ・ゲーエムベーハー A device that transmits electromagnetic energy between a primary coil and a secondary coil
WO1997048447A1 (en) * 1996-06-20 1997-12-24 Advanced Bionics Corporation Self-adjusting cochlear implant system and method for fitting same
US6156728A (en) * 1996-11-01 2000-12-05 Genentech, Inc. Treatment of inner ear hair cells
US5999859A (en) * 1997-03-10 1999-12-07 Med-El- Elektromedizinische Gerate G.M.B.H. Apparatus and method for perimodiolar cochlear implant with retro-positioning
EP0869370B1 (en) * 1997-04-01 2003-07-02 STMicroelectronics S.r.l. Means for testing a gate oxide
ATE248459T1 (en) * 1997-05-01 2003-09-15 Med El Elektromed Geraete Gmbh METHOD AND APPARATUS FOR A LOW POWER CONSUMPTION DIGITAL FILTER BANK
US6119044A (en) * 1997-06-02 2000-09-12 Advanced Bionics Corporation Cochlear electrode array with positioning stylet
US6129753A (en) * 1998-03-27 2000-10-10 Advanced Bionics Corporation Cochlear electrode array with electrode contacts on medial side
US6045528A (en) * 1997-06-13 2000-04-04 Intraear, Inc. Inner ear fluid transfer and diagnostic system
US5997524A (en) * 1997-07-18 1999-12-07 Vasca, Inc. Catheter assembly for percutaneous access to subcutaneous port
US6125302A (en) * 1997-09-02 2000-09-26 Advanced Bionics Corporation Precurved modiolar-hugging cochlear electrode
USD419677S (en) 1997-11-04 2000-01-25 Med-El Elektromedizinische Gerate Ges.M.B.H. Speech processor for use with a cochlear implant
US6093144A (en) * 1997-12-16 2000-07-25 Symphonix Devices, Inc. Implantable microphone having improved sensitivity and frequency response
US6231604B1 (en) * 1998-02-26 2001-05-15 Med-El Elektromedizinische Gerate Ges.M.B.H Apparatus and method for combined acoustic mechanical and electrical auditory stimulation
US6296630B1 (en) * 1998-04-08 2001-10-02 Biocardia, Inc. Device and method to slow or stop the heart temporarily
US6348070B1 (en) * 1998-04-17 2002-02-19 Med-El Elektromedizinische Gerate Ges.M.B.H Magnetic-interference-free surgical prostheses
US6361494B1 (en) * 1998-05-18 2002-03-26 Med-El. Elektromedizinische Gerate Ges.M.B.H. Electrode and method for measuring muscle activity in the pharyngeal airways
US6266568B1 (en) * 1998-06-02 2001-07-24 Advanced Bionics Corporation Inflatable cochlear electrode array and method of making same
DE19829637C2 (en) * 1998-07-02 2000-10-19 Implex Hear Tech Ag Medical implant
FR2781378B1 (en) * 1998-07-23 2001-02-16 Stephane Chanut PROTECTED AND EASILY EXTRACTED NEEDLE DEVICE
US6440102B1 (en) 1998-07-23 2002-08-27 Durect Corporation Fluid transfer and diagnostic system for treating the inner ear
US6309410B1 (en) * 1998-08-26 2001-10-30 Advanced Bionics Corporation Cochlear electrode with drug delivery channel and method of making same
US6968238B1 (en) 1998-08-26 2005-11-22 Kuzma Janusz A Method for inserting cochlear electrode and insertion tool for use therewith
US6862805B1 (en) 1998-08-26 2005-03-08 Advanced Bionics Corporation Method of making a cochlear electrode array having current-focusing and tissue-treating features
US6195586B1 (en) 1998-08-26 2001-02-27 Advanced Bionics Corporation Space-filling cochlear electrode
US6397110B1 (en) 1998-08-26 2002-05-28 Advanced Bionics Corporation Cochlear electrode system including detachable flexible positioner
DE19853299C2 (en) * 1998-11-19 2003-04-03 Thomas Lenarz Catheter for the application of medication in fluid spaces of the human inner ear
AU2540400A (en) 1999-01-28 2000-08-18 Cochlear Limited Auditive prosthesis comprising a carrier which can be implanted in a cochlea
US6535153B1 (en) * 1999-02-04 2003-03-18 Med-El Electromedizinische Gerate Ges.M.B.H. Adaptive sigma-delta modulation with one-bit quantization
WO2000069513A1 (en) * 1999-05-14 2000-11-23 Advanced Bionics Corporation Electrode array for hybrid cochlear stimulator
US6259951B1 (en) * 1999-05-14 2001-07-10 Advanced Bionics Corporation Implantable cochlear stimulator system incorporating combination electrode/transducer
EP2291005B1 (en) * 1999-07-21 2016-09-07 MED-EL Elektromedizinische Geräte GmbH Multichannel cochlea implant having neural telemetry reaction
US6374143B1 (en) * 1999-08-18 2002-04-16 Epic Biosonics, Inc. Modiolar hugging electrode array
EP1854504B1 (en) * 1999-08-26 2012-09-19 Med-El Elektromedizinische Geräte GmbH Electrical nerve stimulation based on channel specific sampling sequences
US6363286B1 (en) * 1999-09-24 2002-03-26 Cardiac Pacemakers, Inc. High impedance electrode assembly
US6358281B1 (en) 1999-11-29 2002-03-19 Epic Biosonics Inc. Totally implantable cochlear prosthesis
WO2001056521A1 (en) * 2000-01-31 2001-08-09 Med-El Elektromedizinische Gerate Gmbh Cochlear implant system partially insertable in the external ear
DE10018334C1 (en) * 2000-04-13 2002-02-28 Implex Hear Tech Ag At least partially implantable system for the rehabilitation of a hearing impairment
DE10018360C2 (en) * 2000-04-13 2002-10-10 Cochlear Ltd At least partially implantable system for the rehabilitation of a hearing impairment
US6628991B2 (en) 2000-04-28 2003-09-30 Advanced Bionics Corporation Minimally-invasive access into the cochlea for electrode insertion and fluid delivery
AUPR148400A0 (en) * 2000-11-14 2000-12-07 Cochlear Limited Apparatus for delivery of pharmaceuticals to the cochlea
US7050858B1 (en) 2001-04-06 2006-05-23 Advanced Bionics Corporation Insertion tool for placement of electrode system inside the cochlear lumen
ATE342025T1 (en) * 2001-06-18 2006-11-15 Durect Corp DEVICE FOR DELIVERING MICRO DOSES OF A MEDICATION INTO THE EAR
JP4398728B2 (en) 2001-10-24 2010-01-13 メド−エル・エレクトロメディツィニシェ・ゲラーテ・ゲーエムベーハー Implantable fluid delivery device and implantable electrode
EP1488525B1 (en) * 2002-03-28 2010-08-18 Med-El Elektromedizinische Geräte GmbH A system and method for adaptive sigma-delta modulation
CA2478324C (en) * 2002-04-01 2011-09-06 Martin Zimmerling Reducing effect of magnetic and electromagnetic fields on an implant's magnet and/or electronics
US20040012798A1 (en) * 2002-07-19 2004-01-22 Jeran Paul L. Media handling device having media optimization
WO2004024212A2 (en) * 2002-09-10 2004-03-25 Vibrant Med-El Hearing Technology Gmbh Implantable medical devices with multiple transducers
EP1539295A2 (en) 2002-09-19 2005-06-15 Advanced Bionics Corporation Cochlear implant electrode and method of making same
US7319906B2 (en) 2002-09-19 2008-01-15 Advanced Bionics Corporation Cochlear implant electrode and method of making same
US8021359B2 (en) 2003-02-13 2011-09-20 Coaptus Medical Corporation Transseptal closure of a patent foramen ovale and other cardiac defects
US6954913B2 (en) * 2003-04-03 2005-10-11 Sun Microsystems Inc. System and method for in-situ signal delay measurement for a microprocessor
EP1861161A4 (en) * 2005-01-24 2012-05-16 Neurosystec Corp Apparatus and method for delivering therapeutic and/or other agents to the inner ear and to other tissues
JP4328764B2 (en) * 2005-07-14 2009-09-09 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Imaging device and transfer board moving device
US7555352B2 (en) 2005-11-08 2009-06-30 Cochlear Limited Implantable carrier member having a non-communicative lumen
US8444609B2 (en) 2006-04-28 2013-05-21 Medtronic, Inc. Implantable therapeutic substance delivery system with catheter access port block and method of use

Similar Documents

Publication Publication Date Title
US10272232B2 (en) Implantable fluid delivery apparatus and implantable electrode
US8712517B2 (en) Implantable neuro-stimulation electrode with fluid reservoir
AU2002363103A1 (en) Implantable fluid delivery apparatuses and implantable electrode
US9089450B2 (en) Implantatable component having an accessible lumen and a drug release capsule for introduction into same
US20120172832A1 (en) Independently-manufactured drug delivery module and corresponding receptacle in an implantable medical device
US20090254163A1 (en) Securing an implanted medical device in a patient
US20230201457A1 (en) Mass transport inside mammals
CN118948528A (en) Inner earplug