US8078275B2 - Regulation of neurotrophins - Google Patents
Regulation of neurotrophins Download PDFInfo
- Publication number
- US8078275B2 US8078275B2 US11/303,619 US30361905A US8078275B2 US 8078275 B2 US8078275 B2 US 8078275B2 US 30361905 A US30361905 A US 30361905A US 8078275 B2 US8078275 B2 US 8078275B2
- Authority
- US
- United States
- Prior art keywords
- signal generator
- cortex
- neurotrophic factors
- neural tissue
- level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0526—Head electrodes
- A61N1/0529—Electrodes for brain stimulation
- A61N1/0531—Brain cortex electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
- A61N1/36121—Production of neurotransmitters; Modulation of genes expression
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/14244—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
- A61M5/14276—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body specially adapted for implantation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0526—Head electrodes
- A61N1/0529—Electrodes for brain stimulation
- A61N1/0534—Electrodes for deep brain stimulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0551—Spinal or peripheral nerve electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/326—Applying electric currents by contact electrodes alternating or intermittent currents for promoting growth of cells, e.g. bone cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
- A61N1/36082—Cognitive or psychiatric applications, e.g. dementia or Alzheimer's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0526—Head electrodes
- A61N1/0529—Electrodes for brain stimulation
Definitions
- the present invention relates to techniques for regulating the level of one or more neurotrophic factors within a human body by way of electrical stimulation and/or drug infusion.
- Neurotrophins play an important role in the development, regeneration, synaptogenesis and connectivity of neurons in mammals. Neurons—such as basal forebrain cholinergic neurons, motor neurons and sensory neurons of the central nervous system—remain responsive to neurotrophic factors even in adult humans. The presence of neurotrophic factors may even facilitate the regeneration of neurons and the repair of neural circuits after loss or damage. Work with cell cultures and animal models has shown that neurotrophins prevent neuronal death, induce neural sprouting and enhance neural recovery and repair. In addition to neurogenesis, neurotrophins are known to have a variety of beneficial effects on neurons including, neuroprotection, rescue from toxicity or injury, and induction of synaptogenesis.
- neurotrophins may be useful for the treatment of neurodegenerative conditions such as Alzheimer's Disease (AD), Parkinson's Disease (PD), amyotrophic lateral sclerosis (ALS), peripheral sensory neuropathies and spinal cord injuries.
- neurotrophins may act on neurons affected by other neurological and psychiatric pathologies including ischemia, epilepsy, depression and eating disorders.
- BDNF Brain-Derived Neurotrophic Factor
- the reduction in BDNF expression for example has been implicated to be important in stress and in depression.
- U.S. Pat. No. 6,815,431 discloses methods for intraparenchymal delivery of neurotrophins to defective, diseased or damaged cells in the mammalian brain using a lentiviral expression vector.
- the prior fails to disclose any techniques for regulating the human body's own expression of neurotrophic factors.
- An embodiment of the invention uses electrical stimulation of nerve elements of a human body to regulate the expression of neurotrophic factors.
- the treatment is carried out by an implantable signal generator and at least one implantable electrode having a proximal end coupled to the signal generator and having a stimulation portion for electrically affecting nerve elements of the human body.
- the method regulates the expression of Brain-Derived Neurotrophic Factor (BDNF) in the brain to treat various neurodegenerative, neurological, psychiatric and cognitive disorders.
- BDNF Brain-Derived Neurotrophic Factor
- the treatment may be carried out by an implantable pump and at least one catheter having a proximal end coupled to the pump and having a discharge portion for infusing therapeutic dosages of the one or more drugs into a predetermined infusion site at or near nerve elements.
- the nerve elements may be stimulated to increase or decrease its production of neurotrophic factors.
- drug infusion may be used as treatment therapy instead of or in addition to the electrical stimulation.
- a sensor is used in combination with the signal generator and stimulating electrodes to regulate expression of neurotrphic factors.
- Control means responsive to the sensor may thereby regulate the signal generator and/or pump so that the neurological disorder is treated.
- neurodegenerative and cognitive disorders can be controlled or treated through the regulation of the expression of neurotrophic factors.
- FIG. 1 is a diagrammatic illustration of an electrode implanted in a brain according to a preferred embodiment and a signal generator coupled to the electrode.
- FIGS. 2 and 2A are diagrammatic illustrations of a catheter implanted in a brain according to a preferred embodiment.
- FIG. 3 is a schematic block diagram of a microprocessor and related circuitry of an implantable medical device for use with the invention.
- FIG. 4( a ) is a diagram depicting the anterior thalamic nuclei complex and FIG. 4( b ) is a diagram depicting the dentate gyrus.
- the invention discloses techniques for delivering treatment therapy to nerve elements of a human body to regulate the body's expression of neurotrophic factors.
- the regulation of Brain-Derived Neurotrophic Factor (BDNF) in the brain may be performed to treat various neurodegenerative, neurological, psychiatric and cognitive disorders and/or to treat locations of the body exhibiting neuronal loss or damage.
- BDNF Brain-Derived Neurotrophic Factor
- neurotrophic factors and their receptors including, but not limited to, Artemin, CNTF, Erbs, EGF, FGFs, GDNF, GFRas, gp130, IGFs, Neuregulins, Neurturin, b-NGF, NT-3, NT-4, Neuropilins, PDGFs, Persephin, Ret, Trks, and VEGFs.
- any nerve area of the human body may be influenced including the brain (cortical areas and sub-cortical areas such as deep brain elements), the spinal cord or peripheral nerves.
- the invention incorporates electrical stimulation and/or drug infusion techniques to directly or indirectly influence tissue elements within the brain.
- One or more electrodes and/or catheters are implanted in the brain so that the stimulation or infusion portions lie within or in communication with predetermined portions of the brain.
- the electrical stimulation or drug therapy influences the predetermined brain elements to achieve the desired result in the expression of neurotrophic factors.
- the present invention is implemented within an implantable neurostimulator system, however, those skilled in the art will appreciate that the present invention may be implemented generally within any implantable medical device system including, but not limited to, implantable drug delivery systems, implantable systems providing stimulation and drug delivery.
- the present invention may be utilized to treat, for example, any number of conditions that result from neuronal loss or damage including, but not limited to, depression, epilepsy, post cranial irradiation, steroid induced impairment, stress disorders, cognitive disorders, Alzheimer's disease, and other neurodegenerative diseases.
- Such other neurodegenerative diseases include, for example, Amyotrophic lateral sclerosis (ALS), Huntingtons, Spinocerebellar ataxias (SCA's).
- ALS Amyotrophic lateral sclerosis
- SCA's Spinocerebellar ataxias
- the present application may be desirable to reduce the level of neurotrophins in a body. For example, circumstances where it may desirable to reduce levels of neurotrophins include in cases of painful neuropathies to reduce neural sprouting and in cases of epilepsy to reduce maladaptive sprouting and synaptogenesis.
- the targeted treatment site includes any nerve location within the body, and in one embodiment includes the brain (the cortex and/or the sub-cortex).
- the brain the cortex and/or the sub-cortex.
- a multi contact cortical brain surface electrode e.g., Medtronic Resume
- a deep brain electrode may be utilized.
- the sub-cortex can include deep brain elements such as, for example, the anterior thalamic nuclei complex ( FIG. 4( a )), the dentate gyrus ( FIG. 4( b )), the periventricular zone, the Papez circuit, and the cerebellum.
- the Papez circuit is generally a neuronal circuit in the limbic system, consisting of the hippocampus, formix, mammillary body, anterior thalamic nuclei, and cingulate gyrus. Stimulation or drug therapy along the Papez circuit may lead to expression of neurotrophic factors in the hippocampus.
- the periventricular zone is influenced in accordance with the present invention, new neurons may migrate to the striatum, cortex, or the substantia nigra, and brainstem and therefore lead to expression of neurotrophic factors in such areas.
- the cerebellum is another brain location where increased expression of neurotrophic factors may be therapeutically desirable.
- the foregoing techniques may be used to regulate expression of neurotrophic factors by application of electrical stimulation or drug therapy in either the cerebellum or cerebellar afferent or efferents.
- the site of stimulation or drug infusion may be chosen based on the neural structures that are affected by neuronal loss and which ones would benefit from the regulation of neurotrophincs.
- targeting the hippocampal neuronal loss may utilized to treat depression, epilepsy, post cranial irradiation, steroid induced impairment in neurogenesis, stress disorders, cognitive disorders and Alzheimer's disease.
- Targeting the cortical, striatal, substantia nigra, brainstem and cerebellar loss may be utilized to treat Huntington's Disease, Alzheimers, multiple system atrophy, Parkinson's disease, post-irradiation disorders, paraneoplastic disorders and the Spinocerebellar ataxias.
- the techniques of the present invention may also be applicable to treat neuronal loss that occurs as a consequence of congenital disorders, stroke, anoxia, hypoxia, hypoglycemia, metabolic disorders, head injury, drug and alcohol toxicity, nutritional deficiencies, auto-immune disorders, immune disorders, infectious and inflammatory processes.
- an implantable neurostimulator device 16 made in accordance with the preferred embodiment may be implanted below the skin of a patient.
- a lead 522 A is positioned to stimulate a specific site 525 in a brain (B).
- Device 16 may take the form of a modified signal generator Model 7424 manufactured by Medtronic, Inc. under the trademark Itrel II which is incorporated by reference.
- Lead 522 A may take the form of any of the leads sold with the Model 7424 such as Model 3387, for stimulating the brain, and is coupled to device 16 by a conventional conductor 522 .
- One or more external programmers (not shown) may be utilized to program and/or communicate bi-directionally with the implanted device 16 .
- lead 522 A terminates in four stimulation electrodes implanted into a portion of the brain by conventional stereotactic surgical techniques. Each of the four electrodes is individually connected to device 16 through lead 522 A and conductor 522 .
- Lead 522 A is surgically implanted through a hole in the skull 123 and conductor 522 is implanted between the skull and the scalp 125 as shown in FIG. 1 .
- Conductor 522 is joined to implanted device 16 in the manner shown. Referring to FIG. 2A , device 16 is implanted in a human body 120 in the location shown. Body 120 includes arms 122 and 123 . Alternatively, device 16 may be implanted in the abdomen.
- Conductor 522 may be divided into twin leads 522 A and 522 B that are implanted into the brain bilaterally as shown.
- lead 522 B may be supplied with stimulating pulses from a separate conductor and signal generator.
- Leads 522 A and 522 B could be 1) two electrodes in two separate nuclei that potentiate each others effects or 2) nuclei with opposite effects with the stimulation being used to fine tune the response through opposing forces. It will be appreciated, however, that any number of electrodes may be implanted within the brain in accordance with the invention.
- one or more secondary electrodes may be implanted so that a secondary stimulation portion lies in communication with another predetermined portion of a brain.
- one or more catheters, coupled to a pump may be implanted so that a secondary stimulation portion lies in communication with the tissue elements of the brain.
- the device 16 may be operated to deliver stimulation to deep brain tissue elements to thereby regulate expression of neurotrophic factors within the human brain.
- the particular stimulation delivered may be performed by selecting amplitude, width and frequency of stimulation by the electrode.
- the possible stimulations include between 2 Hertz and 1000 Hertz for frequency, between 0.1 Volts and 10.0 Volts for pulse amplitude, and between 30 ⁇ Seconds and 450 ⁇ Seconds for pulse width.
- the system may be utilized in monopolar, bipolar, or multipolar configurations, in an either continuous or cyclical mode, and in either an open loop or closed loop mode.
- DBS Deep Brain Stimulation
- the applicant used a Western Blot where the levels of BDNF protein were measured (using a BDNF specific antibody) in the hippocampus of a rat receiving DBS in the anterior thalamus. Stimulation at high frequency using the above parameters caused a large increase in the levels of BDNF protein. This increase was specific to BDNF because the level of other proteins, such as the intracellular general metabolic protein glyceraldehyde phosphate dehydrogenase, was unaffected by DBS.
- the system or device of the present invention may utilize drug delivery as the form of treatment therapy.
- a pump 10 may be implanted below the skin of a patient.
- the pump 10 has a port 14 into which a hypodermic needle can be inserted through the skin to inject a quantity of a liquid agent, such as a medication or drug.
- the liquid agent is delivered from pump 10 through a catheter port 20 into a catheter 422 .
- Catheter 422 is positioned to deliver the agent to specific infusion sites in a brain (B).
- Pump 10 may take the form of any number of known implantable pumps including for example that which is disclosed in U.S. Pat. No. 4,692,147.
- drug delivery may be use to influence nerve tissue to increase or decrease its production of neurotrophins.
- drugs may be administered including, but not limited to, an anesthetic, a GABA agonist, a GABA antagonist, a glutamate antagonist, a glutamate agonist, a degrading enzyme, a reuptake blocker, and a dopamine antagonist.
- An activating chemical may be used and includes any chemical that causes an increase in the discharge rate of neurotrophins from a region.
- An example for projection neurons which receive glutamatergic excitation and GABA inhibition
- a blocking chemical may be used and includes any chemical that inhibits the projection neurons thereby causing a decrease in the discharge rate of neurotrophins from a region.
- An example would be a glutamate antagonist (blocks excitatory input to the projection nerve cells) or a GABA agonist (enhances inhibition of the projection neurons) or a local anaesthetic such as lidocaine and related compounds or an infusion of ions (for example Potassium, Calcium, Sodium, Chloride) or agents to alter ionic concentration or pH level.
- An example of an activating chemical is a GABA antagonist such as bicuculline and an example of a blocking agent would be a GABA agonist such as baclofen.
- catheter 422 terminates in a cylindrical hollow tube 422 A having a distal end 425 implanted, by conventional stereotactic surgical techniques, into a portion of the brain to affect tissue within the human brain.
- Tube 422 A is surgically implanted through a hole in the skull and catheter 422 is implanted between the skull and the scalp as shown in FIG. 2 .
- Catheter 422 is joined to pump 10 in the manner shown.
- Pump 10 is implanted in a human body in a subcutaneous pocket located in the chest below the clavicle. Alternatively, pump 10 may be implanted in the abdomen.
- Catheter 422 may be divided into twin tubes 422 A and 422 B (not shown) that are implanted into the brain bilaterally.
- tube 422 B (not shown) implanted on the other side of the brain may be supplied with drugs from a separate catheter and pump.
- the pump 10 may be programmed to deliver drug according to a particular dosage and/or time interval.
- the pump may delivery drug therapy over a first period when the dose is higher to increase expression of neurotrophic factors followed by a longer period of ongoing delivery to maintain neurotrophin factor levels and secondary trophic effects like axonal sprouting and synaptogenesis.
- a combination of treatment therapies may be delivered to provide influencing of various neuronal types. For example, it may be desirable to concurrently influence, via drug and/or electrical stimulation, the neurons in the hippocampus and other nerve elements in the human body to achieve an improved result.
- Such a device to utilize both forms of treatment therapy may be that which is disclosed, for example, in U.S. Pat. No. 5,782,798.
- the stimulus pulse frequency is controlled by programming a value to a programmable frequency generator 208 using bus 202 .
- the programmable frequency generator provides an interrupt signal to microprocessor 200 through an interrupt line 210 when each stimulus pulse is to be generated.
- the frequency generator may be implemented by model CDP1878 sold by Harris Corporation.
- the amplitude for each stimulus pulse is programmed to a digital to analog converter 218 using bus 202 .
- the analog output is conveyed through a conductor 220 to an output driver circuit 224 to control stimulus amplitude.
- Microprocessor 200 also programs a pulse width control module 214 using bus 202 .
- the pulse width control provides an enabling pulse of duration equal to the pulse width via a conductor 216 . Pulses with the selected characteristics are then delivered from device 16 through cable 522 and lead 522 A to the desired regions of the brain.
- the clinician programs certain key parameters into the memory of the implanted device via telemetry. These parameters may be updated subsequently as needed.
- microcomputer algorithm programmed by the clinician sets the stimulation parameters of signal generator 16 .
- This algorithm may change the parameter values over time but does so independent of any changes in symptoms the patient may be experiencing.
- a closed-loop system discussed below which incorporate a sensor 130 to provide feedback could be used to provide enhanced results.
- Sensor 130 can be used with a closed loop feedback system in order to automatically determine the level of electrical stimulation and/or drug delivery necessary to achieve the desired regulation of neurotrophic factors.
- microprocessor 200 executes a control algorithm in order to provide stimulation with closed loop feedback control.
- Such an algorithm may analyze a sensed signal and deliver the electrical of chemical treatment therapy based on the sensed signal falling within or outside predetermined values or windows, for example, for BDNF and other neurotrophins (e.g., NGF, CNTF, FGF EGF, NT-3) and corticosteroids.
- BDNF neurotrophins
- other neurotrophins e.g., NGF, CNTF, FGF EGF, NT-3
- corticosteroids e.g., corticosteroids.
- the control algorithm may be operable on-line or in real time by detecting an electophysiological or chemical signal or off line by measuring a predetermined clinical benefit.
- the therapy could be guided by the goal of maintaining the population of neurotrophic factors at to a certain level. This could be assessed using the techniques described below.
- the sensor 130 may generate a sensor signal related to the level of a particular neurotrophic factor (using known techniques such as microdialysis or brain probe).
- the sensor 130 may generate a sensor signal related to the extent of neuronal loss.
- the extent of electrical activity or the levels of a neurochemical may be measured that are indicative of neuronal loss.
- magnetic resonance spectroscopy may be used to sense the N-acetylaspartate (NAA) to creatine (Cr) ratio (NAA/Cr) as an indicator of neuronal loss.
- the neuronal loss may be estimated by measuring the volume of the neural structure of interest, which may be achieved by Magnetic Resonance Imaging vollumetry. Any other techniques may also be used to sense the extent of neuronal loss including, for example, MR volumetry, DWI, magnetization transfer MR imaging, and 1H MRS and PET).
- the sensing may provide an indication of a cognitive or neurological disorder.
- U.S. Pat. No. 6,227,203 provides examples of various types of sensors that may be used to detect a symptom or a condition of a cognitive disorder and responsively generate a neurological signal.
- a neurochemical characteristic of the cognitive function may be sensed, additionally or alternatively. For example, sensing of local levels of neurotransmitters (glutamate, GABA, Aspartate), local pH or ion concentration, lactate levels, local cerebral blood flow, glucose utilization or oxygen extraction may also be used as the input component of a closed loop system. These measurements could be taken at rest or in response to a specific memory or cognitive task or in response to a specific sensory or motor stimulus.
- an electro-physiological characteristic of the cognitive function may be sensed, for example, the frequency and pattern of discharge of individual neurons or the amplitude of a local electric field potential.
- the information contained within the neuronal firing spike train including spike amplitude, frequency of action potentials, signal to noise ratio, the spatial and temporal features and the pattern of neuronal firing, oscillation behavior and inter-neuronal correlated activity could be used to deliver therapies on a contingency basis in a closed loop system.
- treatment therapy delivered may be immediate or delayed, diurnal, constant or intermittent depending on contingencies as defined by the closed loop system.
- the system may provide continuous closed-loop feedback control. In another embodiment, the system may be switchable between open-loop and closed-loop by operator control.
- the system may optionally utilize closed-loop feedback control having an analog to digital converter 206 coupled to sensor 130 .
- Output of the A-to-D converter 206 is connected to microprocessor 200 through peripheral bus 202 including address, data and control lines.
- Microprocessor 200 processes sensor data in different ways depending on the type of transducer in use and regulates delivery, via a control algorithm, of electrical stimulation and/or drug delivery based on the sensed signal. For example, when the signal on sensor 130 exceeds a level programmed by the clinician and stored in a memory 204 , increasing amounts of treatment therapy may be applied through an output driver 224 .
- a parameter of the stimulation may be adjusted such as amplitude, pulse width and/or frequency.
Landscapes
- Health & Medical Sciences (AREA)
- Neurology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Neurosurgery (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Psychology (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Developmental Disabilities (AREA)
- Child & Adolescent Psychology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Vascular Medicine (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Cell Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical & Material Sciences (AREA)
- Electrotherapy Devices (AREA)
Abstract
Description
Claims (28)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/303,619 US8078275B2 (en) | 2005-04-15 | 2005-12-16 | Regulation of neurotrophins |
US13/289,899 US8380304B2 (en) | 2005-04-15 | 2011-11-04 | Regulation of neurotrophins |
US13/747,237 US8868191B2 (en) | 2005-04-15 | 2013-01-22 | Regulation of neurotrophins |
US14/508,110 US9227066B2 (en) | 2005-04-15 | 2014-10-07 | Regulation of neurotrophins |
US14/977,065 US9669216B2 (en) | 2005-04-15 | 2015-12-21 | Regulation of neurotrophins |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US67172305P | 2005-04-15 | 2005-04-15 | |
US11/303,619 US8078275B2 (en) | 2005-04-15 | 2005-12-16 | Regulation of neurotrophins |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/289,899 Continuation US8380304B2 (en) | 2005-04-15 | 2011-11-04 | Regulation of neurotrophins |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070067002A1 US20070067002A1 (en) | 2007-03-22 |
US8078275B2 true US8078275B2 (en) | 2011-12-13 |
Family
ID=37087369
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/303,619 Active 2027-09-23 US8078275B2 (en) | 2005-04-15 | 2005-12-16 | Regulation of neurotrophins |
US13/289,899 Active US8380304B2 (en) | 2005-04-15 | 2011-11-04 | Regulation of neurotrophins |
US13/747,237 Active US8868191B2 (en) | 2005-04-15 | 2013-01-22 | Regulation of neurotrophins |
US14/508,110 Active US9227066B2 (en) | 2005-04-15 | 2014-10-07 | Regulation of neurotrophins |
US14/977,065 Active US9669216B2 (en) | 2005-04-15 | 2015-12-21 | Regulation of neurotrophins |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/289,899 Active US8380304B2 (en) | 2005-04-15 | 2011-11-04 | Regulation of neurotrophins |
US13/747,237 Active US8868191B2 (en) | 2005-04-15 | 2013-01-22 | Regulation of neurotrophins |
US14/508,110 Active US9227066B2 (en) | 2005-04-15 | 2014-10-07 | Regulation of neurotrophins |
US14/977,065 Active US9669216B2 (en) | 2005-04-15 | 2015-12-21 | Regulation of neurotrophins |
Country Status (2)
Country | Link |
---|---|
US (5) | US8078275B2 (en) |
WO (1) | WO2006108262A2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8380304B2 (en) | 2005-04-15 | 2013-02-19 | Functional Neuromodulation, Inc. | Regulation of neurotrophins |
US9782590B2 (en) | 2013-10-18 | 2017-10-10 | Functional Neuromodulation, Inc. | Brain stimulation system including diagnostic tool |
US9814881B2 (en) | 2014-09-22 | 2017-11-14 | Boston Scientific Neuromodulation Corporation | Systems and methods for providing therapy using electrical stimulation to disrupt neuronal activity |
US9833622B2 (en) | 2014-09-22 | 2017-12-05 | Boston Scientific Neuromodulation Corporation | Devices and methods using a pathological frequency in electrical stimulation for pain management |
US9901737B2 (en) | 2014-09-22 | 2018-02-27 | Boston Scientific Neuromodulation Corporation | Systems and methods for providing therapy to a patient using intermittent electrical stimulation |
US9925378B2 (en) | 2014-09-22 | 2018-03-27 | Boston Scientific Neuromodulation Corporation | Devices and methods to use power spectrum or signal association for pain management |
US9925377B2 (en) | 2014-09-22 | 2018-03-27 | Boston Scientific Neuromodulation Corporation | Systems and methods for providing therapy using electrical stimulation to disrupt neuronal activity |
US10576283B2 (en) | 2014-08-14 | 2020-03-03 | Functional Neuromodulation, Inc. | Brain stimulation system including multiple stimulation modes |
US11020592B2 (en) | 2017-11-17 | 2021-06-01 | Boston Scientific Neuromodulation Corporation | Systems and methods for generating intermittent stimulation using electrical stimulation systems |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080077192A1 (en) | 2002-05-03 | 2008-03-27 | Afferent Corporation | System and method for neuro-stimulation |
US8309057B2 (en) * | 2005-06-10 | 2012-11-13 | The Invention Science Fund I, Llc | Methods for elevating neurotrophic agents |
US8868177B2 (en) * | 2009-03-20 | 2014-10-21 | ElectroCore, LLC | Non-invasive treatment of neurodegenerative diseases |
US11297445B2 (en) | 2005-11-10 | 2022-04-05 | Electrocore, Inc. | Methods and devices for treating primary headache |
US8892206B1 (en) * | 2006-10-25 | 2014-11-18 | Advanced Neuromodulation Systems, Inc. | Closed-loop deep brain stimulation system adapted to accommodate glial scarring and method of operation |
DE102007022960A1 (en) * | 2007-05-16 | 2008-11-20 | Forschungszentrum Jülich GmbH | stimulation device |
GR1006568B (en) * | 2008-04-22 | 2009-10-13 | Αλεξανδρος Μπερης | Method and system for recording of, and aiding in, the regeneration of a peripheral nerve. |
EP2644227B1 (en) | 2008-07-30 | 2016-12-28 | Ecole Polytechnique Fédérale de Lausanne | Apparatus for optimized stimulation of a neurological target |
US8447409B2 (en) * | 2008-10-15 | 2013-05-21 | Cochlear Limited | Electroneural interface for a medical implant |
US8788064B2 (en) | 2008-11-12 | 2014-07-22 | Ecole Polytechnique Federale De Lausanne | Microfabricated neurostimulation device |
US10512769B2 (en) | 2009-03-20 | 2019-12-24 | Electrocore, Inc. | Non-invasive magnetic or electrical nerve stimulation to treat or prevent autism spectrum disorders and other disorders of psychological development |
US11229790B2 (en) | 2013-01-15 | 2022-01-25 | Electrocore, Inc. | Mobile phone for treating a patient with seizures |
AU2010326613B2 (en) | 2009-12-01 | 2015-09-17 | Ecole Polytechnique Federale De Lausanne | Microfabricated surface neurostimulation device and methods of making and using the same |
AU2011234422B2 (en) | 2010-04-01 | 2015-11-05 | Ecole Polytechnique Federale De Lausanne (Epfl) | Device for interacting with neurological tissue and methods of making and using the same |
WO2011133583A1 (en) * | 2010-04-19 | 2011-10-27 | Functional Neuromodulation Inc. | Deep brain stimulation of memory circuits in alzheimer's disease |
US11400288B2 (en) | 2010-08-19 | 2022-08-02 | Electrocore, Inc | Devices and methods for electrical stimulation and their use for vagus nerve stimulation on the neck of a patient |
US20200086108A1 (en) | 2010-08-19 | 2020-03-19 | Electrocore, Inc. | Vagal nerve stimulation to reduce inflammation associated with an aneurysm |
US11511109B2 (en) | 2011-03-10 | 2022-11-29 | Electrocore, Inc. | Non-invasive magnetic or electrical nerve stimulation to treat gastroparesis, functional dyspepsia, and other functional gastrointestinal disorders |
US9446238B2 (en) | 2013-01-25 | 2016-09-20 | Andres M. Lozano | Deep brain stimulation of the subcallosal cingulate area for treatment of refractory anorexia nervosa |
US10966620B2 (en) | 2014-05-16 | 2021-04-06 | Aleva Neurotherapeutics Sa | Device for interacting with neurological tissue and methods of making and using the same |
US11311718B2 (en) | 2014-05-16 | 2022-04-26 | Aleva Neurotherapeutics Sa | Device for interacting with neurological tissue and methods of making and using the same |
US9403011B2 (en) | 2014-08-27 | 2016-08-02 | Aleva Neurotherapeutics | Leadless neurostimulator |
US9474894B2 (en) | 2014-08-27 | 2016-10-25 | Aleva Neurotherapeutics | Deep brain stimulation lead |
US10195424B2 (en) | 2015-02-20 | 2019-02-05 | The Research Foundation Of The City University Of New York | Methods and systems for treatment of spinal disorders using trans-spinal direct current stimulation |
CN109069824B (en) | 2016-02-02 | 2022-09-16 | 阿莱瓦神经治疗股份有限公司 | Treatment of autoimmune diseases using deep brain stimulation |
US10702692B2 (en) | 2018-03-02 | 2020-07-07 | Aleva Neurotherapeutics | Neurostimulation device |
EP3768251A4 (en) | 2018-03-22 | 2022-12-07 | Research Foundation Of The City University Of New York | Modulation of neuronal nkcc1 as a therapeutic strategy for spasticity and related disorders |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6356784B1 (en) * | 1999-04-30 | 2002-03-12 | Medtronic, Inc. | Method of treating movement disorders by electrical stimulation and/or drug infusion of the pendunulopontine nucleus |
US20030014089A1 (en) * | 2001-06-29 | 2003-01-16 | Chow Alan Y. | Methods for improving damaged retinal cell function |
WO2003039660A1 (en) * | 2001-11-09 | 2003-05-15 | Cochlear Limited | Subthreshold stimulation of a cochlea |
US20030097121A1 (en) * | 2001-10-24 | 2003-05-22 | Claude Jolly | Implantable fluid delivery apparatuses and implantable electrode |
US6815431B2 (en) | 1998-04-15 | 2004-11-09 | Regents Of The University Of California | Methods for therapy of neurodegenerative disease of the brain |
US20050075701A1 (en) * | 2003-10-01 | 2005-04-07 | Medtronic, Inc. | Device and method for attenuating an immune response |
US6885888B2 (en) * | 2000-01-20 | 2005-04-26 | The Cleveland Clinic Foundation | Electrical stimulation of the sympathetic nerve chain |
US20050171579A1 (en) * | 2001-11-09 | 2005-08-04 | Claudia Tasche | Stimulating device |
US7598049B2 (en) * | 2003-11-19 | 2009-10-06 | Satoris, Inc. | Methods for diagnosis of Alzheimer's Disease in blood samples |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4692147A (en) | 1980-04-02 | 1987-09-08 | Medtronic, Inc. | Drug administration device |
US5782798A (en) | 1996-06-26 | 1998-07-21 | Medtronic, Inc. | Techniques for treating eating disorders by brain stimulation and drug infusion |
US6227203B1 (en) | 1998-02-12 | 2001-05-08 | Medtronic, Inc. | Techniques for controlling abnormal involuntary movements by brain stimulation and drug infusion |
US8078275B2 (en) | 2005-04-15 | 2011-12-13 | Functional Neuromodulation Inc. | Regulation of neurotrophins |
-
2005
- 2005-12-16 US US11/303,619 patent/US8078275B2/en active Active
- 2005-12-19 WO PCT/CA2005/001909 patent/WO2006108262A2/en not_active Application Discontinuation
-
2011
- 2011-11-04 US US13/289,899 patent/US8380304B2/en active Active
-
2013
- 2013-01-22 US US13/747,237 patent/US8868191B2/en active Active
-
2014
- 2014-10-07 US US14/508,110 patent/US9227066B2/en active Active
-
2015
- 2015-12-21 US US14/977,065 patent/US9669216B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6815431B2 (en) | 1998-04-15 | 2004-11-09 | Regents Of The University Of California | Methods for therapy of neurodegenerative disease of the brain |
US6356784B1 (en) * | 1999-04-30 | 2002-03-12 | Medtronic, Inc. | Method of treating movement disorders by electrical stimulation and/or drug infusion of the pendunulopontine nucleus |
US6885888B2 (en) * | 2000-01-20 | 2005-04-26 | The Cleveland Clinic Foundation | Electrical stimulation of the sympathetic nerve chain |
US20030014089A1 (en) * | 2001-06-29 | 2003-01-16 | Chow Alan Y. | Methods for improving damaged retinal cell function |
US20030097121A1 (en) * | 2001-10-24 | 2003-05-22 | Claude Jolly | Implantable fluid delivery apparatuses and implantable electrode |
WO2003039660A1 (en) * | 2001-11-09 | 2003-05-15 | Cochlear Limited | Subthreshold stimulation of a cochlea |
US20050033377A1 (en) * | 2001-11-09 | 2005-02-10 | Dusan Milojevic | Subthreshold stimulation of a cochlea |
US20050171579A1 (en) * | 2001-11-09 | 2005-08-04 | Claudia Tasche | Stimulating device |
US20050075701A1 (en) * | 2003-10-01 | 2005-04-07 | Medtronic, Inc. | Device and method for attenuating an immune response |
US7598049B2 (en) * | 2003-11-19 | 2009-10-06 | Satoris, Inc. | Methods for diagnosis of Alzheimer's Disease in blood samples |
Non-Patent Citations (1)
Title |
---|
Balkowiec et al. Activity-Dependent Release of Endogenous Brain-Derived Neurotrophic Factor from Primary Sensory Neurons Detected by ELISA In Situ. The Journal of Neuroscience. Oct. 1, 2000, 20(19):7417-7423. * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8380304B2 (en) | 2005-04-15 | 2013-02-19 | Functional Neuromodulation, Inc. | Regulation of neurotrophins |
US8868191B2 (en) | 2005-04-15 | 2014-10-21 | Functional Neuromodulation, Inc. | Regulation of neurotrophins |
US9227066B2 (en) | 2005-04-15 | 2016-01-05 | Functional Neuromodulation Inc. | Regulation of neurotrophins |
US9669216B2 (en) | 2005-04-15 | 2017-06-06 | Functional Neuromodulation Inc. | Regulation of neurotrophins |
US9782590B2 (en) | 2013-10-18 | 2017-10-10 | Functional Neuromodulation, Inc. | Brain stimulation system including diagnostic tool |
US11745014B2 (en) | 2014-08-14 | 2023-09-05 | Functional Neuromodulation, Inc. | Brain stimulation system including multiple stimulation modes |
US10576283B2 (en) | 2014-08-14 | 2020-03-03 | Functional Neuromodulation, Inc. | Brain stimulation system including multiple stimulation modes |
US9925378B2 (en) | 2014-09-22 | 2018-03-27 | Boston Scientific Neuromodulation Corporation | Devices and methods to use power spectrum or signal association for pain management |
US9901737B2 (en) | 2014-09-22 | 2018-02-27 | Boston Scientific Neuromodulation Corporation | Systems and methods for providing therapy to a patient using intermittent electrical stimulation |
US9925377B2 (en) | 2014-09-22 | 2018-03-27 | Boston Scientific Neuromodulation Corporation | Systems and methods for providing therapy using electrical stimulation to disrupt neuronal activity |
US10004902B2 (en) | 2014-09-22 | 2018-06-26 | Lowe Graham Jones PLLC | Devices and methods using a pathological frequency in electrical stimulation for pain management |
US10130816B2 (en) | 2014-09-22 | 2018-11-20 | Boston Scientific Neruomodulation Corporation | Devices and methods to use power spectrum or signal association for pain management |
US10369364B2 (en) | 2014-09-22 | 2019-08-06 | Boston Scientific Neuromodulation Corporation | Devices and methods to use power spectrum or signal association for pain management |
US9833622B2 (en) | 2014-09-22 | 2017-12-05 | Boston Scientific Neuromodulation Corporation | Devices and methods using a pathological frequency in electrical stimulation for pain management |
US11110276B2 (en) | 2014-09-22 | 2021-09-07 | Boston Scientific Neuromodulation Corporation | Devices and methods to use power spectrum or signal association for pain management |
US11691012B2 (en) | 2014-09-22 | 2023-07-04 | Boston Scientific Neuromodulation Corporation | Devices and methods to use power spectrum or signal association for pain management |
US9814881B2 (en) | 2014-09-22 | 2017-11-14 | Boston Scientific Neuromodulation Corporation | Systems and methods for providing therapy using electrical stimulation to disrupt neuronal activity |
US11020592B2 (en) | 2017-11-17 | 2021-06-01 | Boston Scientific Neuromodulation Corporation | Systems and methods for generating intermittent stimulation using electrical stimulation systems |
Also Published As
Publication number | Publication date |
---|---|
US20120053647A1 (en) | 2012-03-01 |
US20150105838A1 (en) | 2015-04-16 |
US9227066B2 (en) | 2016-01-05 |
US20070067002A1 (en) | 2007-03-22 |
US8380304B2 (en) | 2013-02-19 |
WO2006108262A2 (en) | 2006-10-19 |
US8868191B2 (en) | 2014-10-21 |
US20140039393A1 (en) | 2014-02-06 |
US20160279420A1 (en) | 2016-09-29 |
US9669216B2 (en) | 2017-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9669216B2 (en) | Regulation of neurotrophins | |
US20230218901A1 (en) | Cognitive function within a human brain | |
US8612006B2 (en) | Inducing neurogenesis within a human brain | |
US11745014B2 (en) | Brain stimulation system including multiple stimulation modes | |
US20240342483A1 (en) | Brain stimulation system including diagnostic tool | |
US7640063B2 (en) | Methods of treating medical conditions by neuromodulation of the cerebellar pathways | |
US20170143966A1 (en) | Systems and methods for determining a trajectory for a brain stimulation lead | |
US20230173257A1 (en) | Inducing neurogenesis within a human brain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FUNCTIONAL NEUROMODULATION INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUNCTIONAL NEUROSCIENCE INC.;REEL/FRAME:026474/0309 Effective date: 20110505 Owner name: FUNCTIONAL NEUROSCIENCE INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNIVERSITY HEALTH NETWORK;REEL/FRAME:026474/0285 Effective date: 20110503 Owner name: UNIVERSITY HEALTH NETWORK, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LOZANO, ANDRES M.;REEL/FRAME:026474/0245 Effective date: 20110502 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: MEDTRONIC, INC., MINNESOTA Free format text: SECURITY AGREEMENT;ASSIGNOR:FUNCTIONAL NEUROMODULATION INC.;REEL/FRAME:031035/0222 Effective date: 20120229 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 12 |