[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a003476 -id:a003476
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of the real root of x^3 - x^2 - 2 = 0.
+10
6
1, 6, 9, 5, 6, 2, 0, 7, 6, 9, 5, 5, 9, 8, 6, 2, 0, 5, 7, 4, 1, 6, 3, 6, 7, 1, 0, 0, 1, 1, 7, 5, 3, 5, 3, 4, 2, 6, 1, 8, 1, 7, 9, 3, 8, 8, 2, 0, 8, 5, 0, 7, 7, 3, 0, 2, 2, 1, 8, 7, 0, 7, 2, 8, 4, 4, 5, 2, 4, 4, 5, 3, 4, 5, 4, 0, 8, 0, 0, 7, 2, 2, 1, 3, 9, 9
OFFSET
1,2
REFERENCES
D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves, unpublished, 1976, end of section 2. See links in A003229.
LINKS
Angel Chang and Tianrong Zhang, The Fractal Geometry of the Boundary of Dragon Curves, Journal of Recreational Mathematics, volume 30, number 1, 1999-2000, pages 9-22.
FORMULA
r = D^(1/3) + (1/9)*D^(-1/3) + 1/3 where D = 28/27 + (1/9)*sqrt(29*3) [Chang and Zhang] from the usual cubic solution formula. Or similarly r = (1/3)*(1 + C + 1/C) where C = (28 + sqrt(29*27))^(1/3). - Kevin Ryde, Oct 25 2019
EXAMPLE
1.6956207695598620574163671001175353426181793882085077...
MATHEMATICA
z = 2000; r = 8/5;
u = CoefficientList[Series[1/Sum[Floor[(k + 1)*r] (-x)^k, {k, 0, z}], {x, 0, z}], x]; (* A289260 *)
v = N[u[[z]]/u[[z - 1]], 200]
RealDigits[v, 10][[1]] (* A289265 *)
PROG
(PARI) solve(x=1, 2, x^3 - x^2 - 2) \\ Michel Marcus, Oct 26 2019
CROSSREFS
Cf. A078140 (includes guide to constants similar to A289260).
KEYWORD
nonn,cons,easy,changed
AUTHOR
Clark Kimberling, Jul 14 2017
STATUS
approved
Expansion of 1/((1-x)*(1-x-2*x^3)).
(Formerly M0781)
+10
4
1, 2, 3, 6, 11, 18, 31, 54, 91, 154, 263, 446, 755, 1282, 2175, 3686, 6251, 10602, 17975, 30478, 51683, 87634, 148591, 251958, 427227, 724410, 1228327, 2082782, 3531603, 5988258, 10153823, 17217030, 29193547, 49501194, 83935255, 142322350
OFFSET
0,2
REFERENCES
D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves. Unpublished, 1976. See links in A003229 for an earlier version.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
FORMULA
A003476(n+1) + A077949(n)/2 - 1/2. - Ralf Stephan, Sep 25 2004
a(n+1) - a(n) = A077949(n+1). - R. J. Mathar, Mar 22 2011
MAPLE
A003479:=1/(z-1)/(-1+z+2*z**3); # Simon Plouffe in his 1992 dissertation
MATHEMATICA
CoefficientList[Series[1/((1-x)*(1-x-2*x^3)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 12 2012 *)
PROG
(PARI) a(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -2, 2, -1, 2]^n*[1; 2; 3; 6])[1, 1] \\ Charles R Greathouse IV, Jun 23 2020
CROSSREFS
Cf. A003229.
KEYWORD
easy,nonn
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003
STATUS
approved
Expansion of (x + x^2 + x^3) / (1 - x + x^2 - x^3 + x^4) in powers of x.
+10
2
0, 1, 2, 2, 1, 0, -1, -2, -2, -1, 0, 1, 2, 2, 1, 0, -1, -2, -2, -1, 0, 1, 2, 2, 1, 0, -1, -2, -2, -1, 0, 1, 2, 2, 1, 0, -1, -2, -2, -1, 0, 1, 2, 2, 1, 0, -1, -2, -2, -1, 0, 1, 2, 2, 1, 0, -1, -2, -2, -1, 0, 1, 2, 2, 1, 0, -1, -2, -2, -1, 0, 1, 2, 2, 1, 0, -1
OFFSET
0,3
COMMENTS
Cycle period is 10. - Robert G. Wilson v, Aug 02 2018
FORMULA
Euler transform of length 10 sequence [2, -1, -1, 0, -1, 0, 0, 0, 0, 1].
G.f.: x * (1 + x) * (1 - x^3) / ((1 - x) * (1 + x^5)).
INVERT transform is A003476.
a(n) = -a(-n) = -a(n+5) for all n in Z.
a(n) = f(n) / f(1) where f(n) := tan( am( n*x, m)) where x = 0.7379409146... and m = 1.3481185591... and am() is the Jacobi amplitude function.
EXAMPLE
G.f. = x + 2*x^2 + 2*x^3 + x^4 - x^6 - 2*x^7 - 2*x^8 - x^9 + x^11 + 2*x^12 + ...
MATHEMATICA
a[ n_] := {1, 2, 2, 1, 0}[[Mod[n, 5, 1]]] (-1)^Quotient[n, 5];
CoefficientList[Series[x*(1+x)*(1-x^3)/((1-x)*(1+x^5)), {x, 0, 60}], x] (* G. C. Greubel, Aug 02 2018 *)
CoefficientList[ Series[x (x^2 + x + 1)/(x^4 - x^3 + x^2 - x + 1), {x, 0, 75}], x] (* or *)
LinearRecurrence[{1, -1, 1, -1}, {0, 1, 2, 2}, 75] (* Robert G. Wilson v, Aug 02 2018 *)
PROG
(PARI) {a(n) = [0, 1, 2, 2, 1][n%5 + 1] * (-1)^(n\5)};
(PARI) x='x+O('x^60); concat([0], Vec(x*(1+x)*(1-x^3)/((1-x)*(1+x^5)))) \\ G. C. Greubel, Aug 02 2018
(Magma) m:=60; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x)*(1-x^3)/((1-x)*(1+x^5)))); // G. C. Greubel, Aug 02 2018
CROSSREFS
Cf. A003476.
KEYWORD
sign,easy
AUTHOR
Michael Somos, Apr 30 2015
STATUS
approved
Expansion of (1-x)/(1+x+2*x^3).
+10
1
1, -2, 2, -4, 8, -12, 20, -36, 60, -100, 172, -292, 492, -836, 1420, -2404, 4076, -6916, 11724, -19876, 33708, -57156, 96908, -164324, 278636, -472452, 801100, -1358372, 2303276, -3905476, 6622220, -11228772, 19039724, -32284164, 54741708, -92821156, 157389484, -266872900
OFFSET
0,2
PROG
(PARI) Vec((1-x)/(1+x+2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
CROSSREFS
Equals 4 * (-1)^n * A003476(n-2), n>2.
First differences of A077974.
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved

Search completed in 0.006 seconds