(MAGMAMagma) m:=60; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x)*(1-x^3)/((1-x)*(1+x^5)))); // G. C. Greubel, Aug 02 2018
(MAGMAMagma) m:=60; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x)*(1-x^3)/((1-x)*(1+x^5)))); // G. C. Greubel, Aug 02 2018
editing
approved
Euler transform of length 10 sequence [ 2, -1, -1, 0, -1, 0, 0, 0, 0, 1].
proposed
editing
editing
proposed
a(n) = f(n) / f(1) where f(n) := tan( am( n*x, m)) where x = 0.7379409146... and m = 1.3481185591... and am() is the Jacobi amplitude function.
proposed
editing
editing
proposed
Cycle period is 10. - Robert G. Wilson v, Aug 02 2018
CoefficientList[ Series[x (x^2 + x + 1)/(x^4 - x^3 + x^2 - x + 1), {x, 0, 75}], x] (* or *)
LinearRecurrence[{1, -1, 1, -1}, {0, 1, 2, 2}, 75] (* Robert G. Wilson v, Aug 02 2018 *)
reviewed
editing
proposed
reviewed
editing
proposed
G. C. Greubel, <a href="/A253262/b253262.txt">Table of n, a(n) for n = 0..2500</a>
CoefficientList[Series[x*(1+x)*(1-x^3)/((1-x)*(1+x^5)), {x, 0, 60}], x] (* G. C. Greubel, Aug 02 2018 *)
(PARI) x='x+O('x^60); concat([0], Vec(x*(1+x)*(1-x^3)/((1-x)*(1+x^5)))) \\ G. C. Greubel, Aug 02 2018
(MAGMA) m:=60; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x)*(1-x^3)/((1-x)*(1+x^5)))); // G. C. Greubel, Aug 02 2018
approved
editing