[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a289265 -id:a289265
     Sort: relevance | references | number | modified | created      Format: long | short | data
Coefficients in the expansion of 1/([r]-[2r]x+[3r]x^2-...); [ ]=floor, r=8/5.
+10
3
1, 3, 5, 9, 17, 30, 52, 90, 154, 262, 446, 758, 1286, 2182, 3702, 6278, 10646, 18054, 30614, 51910, 88022, 149254, 253078, 429126, 727638, 1233798, 2092054, 3547334, 6014934, 10199046, 17293718, 29323590, 49721686, 84309126, 142956310, 242399686, 411017942
OFFSET
0,2
COMMENTS
Conjecture: the sequence is strictly increasing.
FORMULA
G.f.: 1/(Sum_{k>=0} [(k+1)*r](-x)^k), where r = 8/5 and [ ] = floor.
From Colin Barker, Jul 14 2017: (Start)
G.f.: (1 + x)^2*(1 - x + x^2 - x^3 + x^4) / ((1 - x)*(1 - x - 2*x^3)).
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - 2*a(n-4) for n>3.
(End)
a(n) = abs(A279780(n)). - Alois P. Heinz, Jul 15 2017
MATHEMATICA
r = 8/5;
u = 1000; (* # initial terms from given series *)
v = 100; (* # coefficients in reciprocal series *)
CoefficientList[Series[1/Sum[Floor[r*(k + 1)] (-x)^k, {k, 0, u}], {x, 0, v}], x]
LinearRecurrence[{2, -1, 2, -2}, {1, 3, 5, 9, 17, 30, 52}, 40] (* Harvey P. Dale, Oct 13 2023 *)
PROG
(PARI) Vec((1 + x)^2*(1 - x + x^2 - x^3 + x^4) / ((1 - x)*(1 - x - 2*x^3)) + O(x^50)) \\ Colin Barker, Jul 20 2017
CROSSREFS
Cf. A078140 (includes guide to related sequences), A289265.
Cf. A279780.
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 14 2017
STATUS
approved
Decimal expansion of the Hausdorff dimension of the Heighway-Harter dragon curve boundary.
+10
2
1, 5, 2, 3, 6, 2, 7, 0, 8, 6, 2, 0, 2, 4, 9, 2, 1, 0, 6, 2, 7, 7, 6, 8, 3, 9, 3, 5, 9, 5, 4, 2, 1, 6, 6, 2, 7, 2, 8, 4, 9, 3, 6, 3, 8, 3, 4, 0, 1, 1, 9, 3, 4, 7, 8, 1, 3, 8, 6, 9, 0, 9, 0, 9, 4, 5, 7, 9, 2, 1, 6, 6, 2, 8, 9, 5, 8, 8, 4, 1, 0, 6, 8, 9, 2, 6, 6, 4, 2, 2, 7, 4, 6, 4, 7, 1, 3, 9, 4, 2, 8, 1, 1, 2, 4
OFFSET
1,2
COMMENTS
The value for 'twindragon' is the same.
LINKS
Angel Chang and Tianrong Zhang, On the Fractal Structure of the Boundary of Dragon Curve, Journal of Recreational Mathematics, volume 30, number 1, 1999-2000, pages 9-22. See also the pdf version.
Eric Weisstein's World of Mathematics, Dragon curve.
Wikipedia, Dragon curve.
FORMULA
Equals log_2((1+(73+6*sqrt(87))^(1/3)+(73-6*sqrt(87))^(1/3))/3).
From Kevin Ryde, Dec 06 2019: (Start)
Equals 2*log(A289265)/log(2) [Chang and Zhang, equation 9].
Equals log(A289265)/log(sqrt(2)). (End)
EXAMPLE
1.5236270862024921062776839359542166272849363834011934781386909094...
MATHEMATICA
RealDigits[Log2[(1 + (73+6*Sqrt[87])^(1/3) + (73-6*Sqrt[87])^(1/3))/3], 10, 100][[1]] (* Amiram Eldar, May 18 2021 *)
PROG
(PARI) log((1+(73+6*sqrt(87))^(1/3)+(73-6*sqrt(87))^(1/3))/3)/log(2)
CROSSREFS
Cf. A014577, A191689 (Levy dragon), A327620 (tame twin-dragon).
KEYWORD
nonn,cons,changed
AUTHOR
Stanislav Sykora, Apr 18 2016
STATUS
approved
Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 2 * T(n-3,k-1) for k = 0..floor(n/3); T(n,k)=0 for n or k < 0.
+10
2
1, 1, 1, 1, 2, 1, 4, 1, 6, 1, 8, 4, 1, 10, 12, 1, 12, 24, 1, 14, 40, 8, 1, 16, 60, 32, 1, 18, 84, 80, 1, 20, 112, 160, 16, 1, 22, 144, 280, 80, 1, 24, 180, 448, 240, 1, 26, 220, 672, 560, 32, 1, 28, 264, 960, 1120, 192, 1, 30, 312, 1320, 2016, 672, 1, 32, 364, 1760, 3360, 1792, 64
OFFSET
0,5
COMMENTS
The numbers in rows of the triangle are along a "second layer" of skew diagonals pointing top-right in center-justified triangle given in A013609 ((1+2*x)^n) and along a "second layer" of skew diagonals pointing top-left in center-justified triangle given in A038207 ((2+x)^n), see links. (Note: First layer skew diagonals in center-justified triangles of coefficients in expansions of (1+2*x)^n and (2+x)^n are given in A128099 and A207538 respectively.)
The coefficients in the expansion of 1/(1-x-2x^3) are given by the sequence generated by the row sums.
The row sums give A003229.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 1.695620769559862... (see A289265), when n approaches infinity.
REFERENCES
Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 358, 359
FORMULA
T(n,k) = 2^k / ((n - 3k)! k!) * (n - 2k)! where n is a nonnegative integer and k = 0..floor(n/3).
EXAMPLE
Triangle begins:
1;
1;
1;
1, 2;
1, 4;
1, 6;
1, 8, 4;
1, 10, 12;
1, 12, 24;
1, 14, 40, 8;
1, 16, 60, 32;
1, 18, 84, 80;
1, 20, 112, 160, 16;
1, 22, 144, 280, 80;
1, 24, 180, 448, 240;
1, 26, 220, 672, 560, 32;
1, 28, 264, 960, 1120, 192;
1, 30, 312, 1320, 2016, 672;
1, 32, 364, 1760, 3360, 1792, 64;
MATHEMATICA
t[n_, k_] := t[n, k] = 2^k/((n - 3 k)! k!) (n - 2 k)!; Table[t[n, k], {n, 0, 18}, {k, 0, Floor[n/3]} ] // Flatten.
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, t[n - 1, k] + 2 t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 18}, {k, 0, Floor[n/3]}] // Flatten.
PROG
(GAP) Flat(List([0..20], n->List([0..Int(n/3)], k->2^k/(Factorial(n-3*k)*Factorial(k))*Factorial(n-2*k)))); # Muniru A Asiru, Jul 31 2018
CROSSREFS
Row sums give A003229.
KEYWORD
tabf,nonn,easy
AUTHOR
Zagros Lalo, Jul 30 2018
STATUS
approved
Decimal expansion of the real root of x^3 - x - 2.
+10
1
1, 5, 2, 1, 3, 7, 9, 7, 0, 6, 8, 0, 4, 5, 6, 7, 5, 6, 9, 6, 0, 4, 0, 8, 0, 8, 3, 2, 2, 5, 4, 4, 3, 8, 5, 1, 4, 4, 2, 8, 3, 8, 9, 8, 2, 8, 4, 2, 7, 9, 0, 3, 9, 0, 9, 0, 9, 0, 4, 9, 8, 0, 1, 5, 4, 2, 8, 1, 5, 6, 4, 0, 3, 4, 3, 0, 5, 8, 8, 2, 1, 6, 0, 4, 9, 1, 6, 3, 7, 9, 2, 6, 9, 6, 7, 3, 3, 8, 7, 7, 0, 5, 6, 7, 9
OFFSET
1,2
FORMULA
Equals ((27 + 3*sqrt(78))^(1/3) + 3/(27 + 3*sqrt(78))^(1/3))/3.
Equals (1 + sqrt(78)/9)^(1/3) + (1 - sqrt(78)/9)^(1/3).
EXAMPLE
1.5213797068045675696040808322544385144283898284279039090904980154281564...
MATHEMATICA
RealDigits[x /. FindRoot[x^3 - x - 2, {x, 2}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Jun 18 2023 *)
PROG
(PARI) solve(x=1, 2, x^3 - x - 2) \\ Michel Marcus, Aug 19 2022
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
Wolfdieter Lang, Aug 19 2022
STATUS
approved
Decimal expansion of the real root of x^3 - 2*x^2 - 1.
+10
1
2, 2, 0, 5, 5, 6, 9, 4, 3, 0, 4, 0, 0, 5, 9, 0, 3, 1, 1, 7, 0, 2, 0, 2, 8, 6, 1, 7, 7, 8, 3, 8, 2, 3, 4, 2, 6, 3, 7, 7, 1, 0, 8, 9, 1, 9, 5, 9, 7, 6, 9, 9, 4, 4, 0, 4, 7, 0, 5, 5, 2, 2, 0, 3, 5, 5, 1, 8, 3, 4, 7, 9, 0, 3, 5, 9, 1, 6, 7, 4, 6, 9, 1, 7, 6, 4, 1, 8
OFFSET
1,1
COMMENTS
This is the minimum number having the property that there are uncountably many permutation classes with the growth rate equal to that number. [Vatter] - Andrey Zabolotskiy, Dec 04 2024
LINKS
Vincent Vatter, Small permutation classes, Proc. London Math. Soc. (3), 103 (2011), 879-921; arXiv:0712.4006 [math.CO], 2007-2016.
Wikipedia, Supersilver ratio.
FORMULA
Equals ((172 + 12*sqrt(177))^(1/3)+16/(172 + 12*sqrt(177))^(1/3) + 4)/6.
Equals ((172 + 12*sqrt(177))^(1/3) + (172 - 12*sqrt(177))^(1/3) + 4)/6.
Equals (((1/2)*(43 + 3*sqrt(3*59)))^(1/3) + ((1/2)*(43 - 3*sqrt(3*59)))^(1/3) + 2)/3.
Equals 2*(1 + 2*cosh(log((43 + 3*sqrt(177))/16)/3))/3. - Vaclav Kotesovec, Aug 19 2022
Equals y + 2/3 where y = 1.538902... is the real root of y^3 - (4/3)*y - 43/27.
Equals 1 + A137421. - R. J. Mathar, Sep 23 2022
Equals 1/A272874. - Hugo Pfoertner, Sep 11 2024
EXAMPLE
2.2055694304005903117020286177838234263771089195976994404705522035518347903...
MATHEMATICA
First[RealDigits[N[Root[#1^3-2#1^2-1 &, 1, 0], 78]]] (* Stefano Spezia, Aug 19 2022 *)
PROG
(PARI) solve(x=2, 3, x^3 - 2*x^2 - 1) \\ Michel Marcus, Aug 19 2022
(PARI) polrootsreal(x^3 - 2*x^2 - 1)[1] \\ Charles R Greathouse IV, Dec 04 2024
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
Wolfdieter Lang, Aug 18 2022
STATUS
approved

Search completed in 0.006 seconds