[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A078140
Convolutory inverse of signed lower Wythoff sequence.
40
1, 3, 5, 9, 17, 30, 52, 90, 154, 262, 446, 758, 1285, 2176, 3683, 6230, 10533, 17803, 30085, 50831, 85873, 145063, 245037, 413891, 699082, 1180761, 1994293, 3368302, 5688920, 9608292, 16227841, 27407792, 46289925, 78180465, 132041227
OFFSET
1,2
COMMENTS
Suppose that r is a real number in the interval [3/2, 5/3). Let C(r) = (c(k)) be the sequence of coefficients in the Maclaurin series for 1/(Sum_{k>=0} floor((k+1)*r))(-x)^k). It appears that c(k) > 0 for all k >= 0. Indeed, it appears that C(r) is strictly increasing and that the limit L(r) of c(k+1)/c(k) as k -> oo exists. Following is a guide for selected numbers r.
** r ** C(r) L(r)
sqrt(7/3) A188135 A288238
sqrt(5/2) A288230 A288240
(1 + sqrt(5))/2 A078140 A281112
sqrt(8/3) A288233 A288935
-1 + sqrt(7) A288234 A289003
-4/5 + sqrt(6) A288236 A289032
sqrt(11/4) A288237 A289033
LINKS
Clark Kimberling, Another question about the golden ratio and other numbers, MathOverflow, Jan 17 2017.
FORMULA
a(n) = d*[w(n)*a(1)-w(n-1)*a(2)+...+d*w(2)*a(n-1)], where d=(-1)^n, with a(1)=1 and w=floor(n*tau), tau=(1+sqrt(5))/2.
EXAMPLE
a(5) = 17 = -[w(5)*a(1)-w(4)*a(2)+w(3)*a(3)-w(2)*a(4)] = -8*1+6*3-4*5+3*9. (a(1),a(2),...,a(n))(*)(w(1),-w(2),w(3),...,-d*w(n)) = (1,0,0,...,0), where (*) denotes convolution, w = lower Wythoff sequence, A000201.
MATHEMATICA
CoefficientList[Series[1/Sum[Floor[GoldenRatio*(k + 1)] (-x)^k, {k, 0, 50}],
{x, 0, 50}], x] (* Clark Kimberling, Dec 12 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Nov 23 2002
EXTENSIONS
Comments added by Clark Kimberling, Jul 10 2017
STATUS
approved