[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a000712 -id:a000712
     Sort: relevance | references | number | modified | created      Format: long | short | data
Indices of primes in A000712.
+20
3
1, 2, 70, 106, 330, 366, 370, 546, 836, 1370, 1870, 2126, 2616, 4240, 4836, 4956, 9520, 10896, 11446, 14250, 15836, 16170, 18040, 18566, 26516, 28676, 37060, 40546, 40760, 46850, 52060, 57176, 67726, 74776, 78460, 90810, 98216, 108870, 115400, 115990, 123930
OFFSET
1,2
LINKS
EXAMPLE
70 is in the sequence because A000712(70) = 7592053897 is prime.
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Apr 14 2017
STATUS
approved
Strip A117488 of r-1 row values 1,2,5,10,20,36,65 ... A000712.
+20
2
1, 2, 3, 5, 8, 14, 10, 18, 30, 49, 20, 34, 59, 94, 149, 36, 63, 104, 169, 264, 405, 65, 108, 179, 284, 445, 676, 1017, 110, 183, 294, 465, 716, 1089, 1622, 2387, 185, 298, 475, 736, 1129, 1694, 2517, 3678, 5324, 300, 479, 746, 1149, 1734, 2589, 3808, 5544, 7972
OFFSET
1,2
COMMENTS
Note that the Durfee Square sequences addressed in A115994, A117488 and this triangular array can be generated using self-convolution of diagonals in the partition array A008284.
FORMULA
T(n,k) = A117488(n,n+k-1), 1<=k<=n . - R. J. Mathar, Jan 22 2008
EXAMPLE
Row four of A117488 is 1 2 5 10 18 30 49
remove 3 terms 1 2 5 so
row four of A117566 is 10 18 30 49
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alford Arnold, Mar 29 2006
EXTENSIONS
More terms from R. J. Mathar, Jan 22 2008
STATUS
approved
a(n) = A011782(n) + A000219(n) - A000712(n).
+20
1
1, 0, 0, 0, 1, 4, 15, 40, 103, 238, 531, 1131, 2362, 4811, 9694, 19307, 38243, 75400, 148443, 291984, 574724, 1132368, 2234617, 4416937, 8745567, 17343737, 34446090, 68500682, 136374947, 271755878, 541950747, 1081467319, 2159170372, 4312555339, 8616279482, 17219151572, 34418065540, 68805730450, 137566021077
OFFSET
0,6
COMMENTS
Old definition was "Counts compositions plus plane partitions less partitions into parts of two kinds".
A116600 is essentially A115981 + A115982 since A000712 = A001523 + A006330.
FORMULA
a(n) = A011782(n) + A000219(n) - A000712(n).
EXAMPLE
a(8) = 103 because A011782(8) + A000219(8) - A000712(8) = 128 + 160 - 185.
PROG
(PARI)
N=66; x='x+O('x^N);
gf011782 =(1-x)/(1-2*x);
gf000219 = 1/prod(n=1, N, (1-x^n)^n );
gf000712 = 1/eta(x)^2;
Vec( gf011782 + gf000219 - gf000712 )
\\ Joerg Arndt, Mar 25 2014
KEYWORD
easy,nonn
AUTHOR
Alford Arnold, Feb 18 2006
EXTENSIONS
Terms a(9) and beyond from Joerg Arndt, Mar 25 2014
STATUS
approved
Triangle generated from the g.f of A000712 (i.e., 1/(1-x^m)^2) interleaved with zeros.
+20
1
1, 2, 2, 3, 2, 4, 4, 2, 4, 9, 5, 2, 4, 10, 14, 6, 2, 4, 10, 19, 23, 7, 2, 4, 10, 20, 34, 32, 8, 2, 4, 10, 20, 39, 55, 46, 9, 2, 4, 10, 20, 40, 66, 88, 60, 10
OFFSET
0,2
COMMENTS
Row sums of the triangle = A000712.
FORMULA
Given 1/(1-x^m)^2 = S(x) = (1 + 2x + 3x^2 + ...), let a = S(x), b = S(x^2) (i.e., S(x) interleaved with one zero); S(x^3) = S(x) interleaved with two zeros = c, etc.; then row 1 = a, row 2 = a*b, row 3 = a*b*c, ...
Take finite differences of the array from the top down, becoming rows of the triangle.
EXAMPLE
First few rows of the array =
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
1, 2, 5, 8, 14, 20, 30, 40, 55, 70, ...
1, 2, 5, 10, 18, 30, 49, 74, 110, 158, ...
1, 2, 5, 10, 20, 34, 59, 94, 149, 224, ...
1, 2, 5, 10, 20, 36, 63, 104, 169, 264, ...
1, 2, 5, 10, 20, 36, 65, 108, 179, 284, ...
...
First few rows of the triangle =
1;
2;
2, 3;
2, 4, 4;
2, 4, 9, 5;
2, 4, 10, 14, 6;
2, 4, 10, 19, 23, 7;
2, 4, 10, 20, 34, 32, 8;
2, 4, 10, 20, 39, 55, 46, 9;
2, 4, 10, 20, 40, 66, 88, 60, 10;
...
CROSSREFS
Cf. A000712.
KEYWORD
nonn,tabl,more
AUTHOR
Gary W. Adamson, Apr 03 2010
STATUS
approved
Numbers k such that A000712(k) is divisible by k.
+20
1
1, 4, 27, 220, 581, 596, 691, 3944, 14082, 35195, 80652, 144032
OFFSET
1,2
COMMENTS
No other terms below 500000.
EXAMPLE
27 is in the sequence because A000712(27) = 240840 = 8920 * 27.
CROSSREFS
Cf. A000712.
KEYWORD
nonn,more
AUTHOR
Vaclav Kotesovec, May 05 2018
STATUS
approved
Array read by rows distributing the values of A000712 (vertically) and A001519 (horizontally).
+20
0
1, 2, 2, 3, 2, 4, 4, 3, 2, 4, 6, 5, 4, 6, 2, 4, 6, 8, 6, 3, 4, 4, 8, 9, 2, 4, 6, 8, 10, 7, 4, 12, 8, 4, 8, 12, 12, 2, 4, 6, 8, 10, 12, 8, 3, 6, 5, 4, 14, 21, 12, 4, 8, 12, 16, 15, 2, 4, 6, 8, 10, 12, 14, 9
OFFSET
0,2
COMMENTS
A001906 records the partial sums of the column sequence A001519 and is also the row sum of A078812 and of A085643; sequences linking a(n) to compositions of n having k parts when there are q kinds of part q. - Alford Arnold, Apr 30 2006
EXAMPLE
The array begins:
1
..2
....2
....3
......2
......4..3
......4
.........2
.........4..4..3
.........6..6..4
.........5
with column sums beginning 1 2 5 10 20 ...A000712 related to A000041
and sums over each template beginning 1 2 5 13 34 ...A001519 related to A000045
CROSSREFS
KEYWORD
easy,nonn,tabf
AUTHOR
Alford Arnold, Feb 11 2006
STATUS
approved
a(n) is the number of partitions of n (the partition numbers).
(Formerly M0663 N0244)
+10
3702
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310, 14883, 17977, 21637, 26015, 31185, 37338, 44583, 53174, 63261, 75175, 89134, 105558, 124754, 147273, 173525
OFFSET
0,3
COMMENTS
Also number of nonnegative solutions to b + 2c + 3d + 4e + ... = n and the number of nonnegative solutions to 2c + 3d + 4e + ... <= n. - Henry Bottomley, Apr 17 2001
a(n) is also the number of conjugacy classes in the symmetric group S_n (and the number of irreducible representations of S_n).
Also the number of rooted trees with n+1 nodes and height at most 2.
Coincides with the sequence of numbers of nilpotent conjugacy classes in the Lie algebras gl(n). A006950, A015128 and this sequence together cover the nilpotent conjugacy classes in the classical A,B,C,D series of Lie algebras. - Alexander Elashvili, Sep 08 2003
Number of distinct Abelian groups of order p^n, where p is prime (the number is independent of p). - Lekraj Beedassy, Oct 16 2004
Number of graphs on n vertices that do not contain P3 as an induced subgraph. - Washington Bomfim, May 10 2005
Numbers of terms to be added when expanding the n-th derivative of 1/f(x). - Thomas Baruchel, Nov 07 2005
Sequence agrees with expansion of Molien series for symmetric group S_n up to the term in x^n. - Maurice D. Craig (towenaar(AT)optusnet.com.au), Oct 30 2006
Also the number of nonnegative integer solutions to x_1 + x_2 + x_3 + ... + x_n = n such that n >= x_1 >= x_2 >= x_3 >= ... >= x_n >= 0, because by letting y_k = x_k - x_(k+1) >= 0 (where 0 < k < n) we get y_1 + 2y_2 + 3y_3 + ... + (n-1)y_(n-1) + nx_n = n. - Werner Grundlingh (wgrundlingh(AT)gmail.com), Mar 14 2007
Let P(z) := Sum_{j>=0} b_j z^j, b_0 != 0. Then 1/P(z) = Sum_{j>=0} c_j z^j, where the c_j must be computed from the infinite triangular system b_0 c_0 = 1, b_0 c_1 + b_1 c_0 = 0 and so on (Cauchy products of the coefficients set to zero). The n-th partition number arises as the number of terms in the numerator of the expression for c_n: The coefficient c_n of the inverted power series is a fraction with b_0^(n+1) in the denominator and in its numerator having a(n) products of n coefficients b_i each. The partitions may be read off from the indices of the b_i. - Peter C. Heinig (algorithms(AT)gmx.de), Apr 09 2007
a(n) is the number of different ways to run up a staircase with n steps, taking steps of sizes 1, 2, 3, ... and r (r <= n), where the order is not important and there is no restriction on the number or the size of each step taken. - Mohammad K. Azarian, May 21 2008
A sequence of positive integers p = p_1 ... p_k is a descending partition of the positive integer n if p_1 + ... + p_k = n and p_1 >= ... >= p_k. If formally needed p_j = 0 is appended to p for j > k. Let P_n denote the set of these partition for some n >= 1. Then a(n) = 1 + Sum_{p in P_n} floor((p_1-1)/(p_2+1)). (Cf. A000065, where the formula reduces to the sum.) Proof in Kelleher and O'Sullivan (2009). For example a(6) = 1 + 0 + 0 + 0 + 0 + 1 + 0 + 0 + 1 + 1 + 2 + 5 = 11. - Peter Luschny, Oct 24 2010
Let n = Sum( k_(p_m) p_m ) = k_1 + 2k_2 + 5k_5 + 7k_7 + ..., where p_m is the m-th generalized pentagonal number (A001318). Then a(n) is the sum over all such pentagonal partitions of n of (-1)^(k_5+k_7 + k_22 + ...) ( k_1 + k_2 + k_5 + ...)! /( k_1! k_2! k_5! ...), where the exponent of (-1) is the sum of all the k's corresponding to even-indexed GPN's. - Jerome Malenfant, Feb 14 2011
From Jerome Malenfant, Feb 14 2011: (Start)
The matrix of a(n) values
a(0)
a(1) a(0)
a(2) a(1) a(0)
a(3) a(2) a(1) a(0)
....
a(n) a(n-1) a(n-2) ... a(0)
is the inverse of the matrix
1
-1 1
-1 -1 1
0 -1 -1 1
....
-d_n -d_(n-1) -d_(n-2) ... -d_1 1
where d_q = (-1)^(m+1) if q = m(3m-1)/2 = the m-th generalized pentagonal number (A001318), = 0 otherwise. (End)
Let k > 0 be an integer, and let i_1, i_2, ..., i_k be distinct integers such that 1 <= i_1 < i_2 < ... < i_k. Then, equivalently, a(n) equals the number of partitions of N = n + i_1 + i_2 + ... + i_k in which each i_j (1 <= j <= k) appears as a part at least once. To see this, note that the partitions of N of this class must be in 1-to-1 correspondence with the partitions of n, since N - i_1 - i_2 - ... - i_k = n. - L. Edson Jeffery, Apr 16 2011
a(n) is the number of distinct degree sequences over all free trees having n + 2 nodes. Take a partition of the integer n, add 1 to each part and append as many 1's as needed so that the total is 2n + 2. Now we have a degree sequence of a tree with n + 2 nodes. Example: The partition 3 + 2 + 1 = 6 corresponds to the degree sequence {4, 3, 2, 1, 1, 1, 1, 1} of a tree with 8 vertices. - Geoffrey Critzer, Apr 16 2011
a(n) is number of distinct characteristic polynomials among n! of permutations matrices size n X n. - Artur Jasinski, Oct 24 2011
Conjecture: starting with offset 1 represents the numbers of ordered compositions of n using the signed (++--++...) terms of A001318 starting (1, 2, -5, -7, 12, 15, ...). - Gary W. Adamson, Apr 04 2013 (this is true by the pentagonal number theorem, Joerg Arndt, Apr 08 2013)
a(n) is also number of terms in expansion of the n-th derivative of log(f(x)). In Mathematica notation: Table[Length[Together[f[x]^n * D[Log[f[x]], {x, n}]]], {n, 1, 20}]. - Vaclav Kotesovec, Jun 21 2013
Conjecture: No a(n) has the form x^m with m > 1 and x > 1. - Zhi-Wei Sun, Dec 02 2013
Partitions of n that contain a part p are the partitions of n - p. Thus, number of partitions of m*n - r that include k*n as a part is A000041(h*n-r), where h = m - k >= 0, n >= 2, 0 <= r < n; see A111295 as an example. - Clark Kimberling, Mar 03 2014
a(n) is the number of compositions of n into positive parts avoiding the pattern [1, 2]. - Bob Selcoe, Jul 08 2014
Conjecture: For any j there exists k such that all primes p <= A000040(j) are factors of one or more a(n) <= a(k). Growth of this coverage is slow and irregular. k = 1067 covers the first 102 primes, thus slower than A000027. - Richard R. Forberg, Dec 08 2014
a(n) is the number of nilpotent conjugacy classes in the order-preserving, order-decreasing and (order-preserving and order-decreasing) injective transformation semigroups. - Ugbene Ifeanyichukwu, Jun 03 2015
Define a segmented partition a(n,k, <s(1)..s(j)>) to be a partition of n with exactly k parts, with s(j) parts t(j) identical to each other and distinct from all the other parts. Note that n >= k, j <= k, 0 <= s(j) <= k, s(1)t(1) + ... + s(j)t(j) = n and s(1) + ... + s(j) = k. Then there are up to a(k) segmented partitions of n with exactly k parts. - Gregory L. Simay, Nov 08 2015
(End)
From Gregory L. Simay, Nov 09 2015: (Start)
The polynomials for a(n, k, <s(1), ..., s(j)>) have degree j-1.
a(n, k, <k>) = 1 if n = 0 mod k, = 0 otherwise
a(rn, rk, <r*s(1), ..., r*s(j)>) = a(n, k, <s(1), ..., s(j)>)
a(n odd, k, <all s(j) even>) = 0
Established results can be recast in terms of segmented partitions:
For j(j+1)/2 <= n < (j+1)(j+2)/2, A000009(n) = a(n, 1, <1>) + ... + a(n, j, <j 1's>), j < n
a(n, k, <j 1's>) = a(n - j(j-1)/2, k)
(End)
a(10^20) was computed using the NIST Arb package. It has 11140086260 digits and its head and tail sections are 18381765...88091448. See the Johansson 2015 link. - Stanislav Sykora, Feb 01 2016
Satisfies Benford's law [Anderson-Rolen-Stoehr, 2011]. - N. J. A. Sloane, Feb 08 2017
The partition function p(n) is log-concave for all n>25 [DeSalvo-Pak, 2014]. - Michel Marcus, Apr 30 2019
a(n) is also the dimension of the n-th cohomology of the infinite real Grassmannian with coefficients in Z/2. - Luuk Stehouwer, Jun 06 2021
Number of equivalence relations on n unlabeled nodes. - Lorenzo Sauras Altuzarra, Jun 13 2022
Equivalently, number of idempotent mappings f from a set X of n elements into itself (i.e., satisfying f o f = f) up to permutation (i.e., f~f' :<=> There is a permutation sigma in Sym(X) such that f' o sigma = sigma o f). - Philip Turecek, Apr 17 2023
Conjecture: Each integer n > 2 different from 6 can be written as a sum of finitely many numbers of the form a(k) + 2 (k > 0) with no summand dividing another. This has been verified for n <= 7140. - Zhi-Wei Sun, May 16 2023
a(n) is also the number of partitions of n*(n+3)/2 into n distinct parts. - David García Herrero, Aug 20 2024
REFERENCES
George E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976.
George E. Andrews and K. Ericksson, Integer Partitions, Cambridge University Press 2004.
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 307.
R. Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; Chapter III.
Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 24-28, Winter 1997.
Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501.
Bruce C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag.
B. C. Berndt, Number Theory in the Spirit of Ramanujan, Chap. I Amer. Math. Soc. Providence RI 2006.
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 999.
J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 183.
L. E. Dickson, History of the Theory of Numbers, Vol.II Chapter III pp. 101-164, Chelsea NY 1992.
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 37, Eq. (22.13).
H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
G. H. Hardy and S. Ramanujan, Asymptotic formulas in combinatorial analysis, Proc. London Math. Soc., 17 (1918), 75-.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (Fifth edition), Oxford Univ. Press (Clarendon), 1979, 273-296.
D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.4, p. 396.
D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIV.1, p. 491.
S. Ramanujan, Collected Papers, Chap. 25, Cambridge Univ. Press 1927 (Proceedings of the Camb. Phil. Soc., 19 (1919), pp. 207-213).
S. Ramanujan, Collected Papers, Chap. 28, Cambridge Univ. Press 1927 (Proceedings of the London Math. Soc., 2, 18(1920)).
S. Ramanujan, Collected Papers, Chap. 30, Cambridge Univ. Press 1927 (Mathematische Zeitschrift, 9 (1921), pp. 147-163).
S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962. See Table IV on page 308.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 122.
J. E. Roberts, Lure of the Integers, pp. 168-9 MAA 1992.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. E. Tapscott and D. Marcovich, "Enumeration of Permutational Isomers: The Porphyrins", Journal of Chemical Education, 55 (1978), 446-447.
Robert M. Young, "Excursions in Calculus", Mathematical Association of America, p. 367.
LINKS
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 836. [scanned copy]
Scott Ahlgren and Ken Ono, Addition and Counting: The Arithmetic of Partitions, Notices of the AMS, 48 (2001) pp. 978-984.
Scott Ahlgren and Ken Ono, Congruence properties for the partition function, PNAS, vol. 98 no. 23, 12882-12884.
Gert Almkvist, Asymptotic formulas and generalized Dedekind sums, Exper. Math., 7 (No. 4, 1998), pp. 343-359.
Gert Almkvist, On the differences of the partition function, Acta Arith., 61.2 (1992), 173-181.
Gert Almkvist and Herbert S. Wilf, On the coefficients in the Hardy-Ramanujan-Rademacher formula for p(n). [Broken link?]
Gert Almkvist and Herbert S. Wilf, On the coefficients in the Hardy-Ramanujan-Rademacher formula for p(n), Journal of Number Theory, Vol. 50, No. 2, 1995, pp. 329-334.
Amazing Mathematical Object Factory, Information on Partitions. [Wayback Machine link]
Theresa C. Anderson, Larry Rolen and Ruth Stoehr, Benford's Law for Coefficients of Modular Forms and Partition Functions, Proceedings of the American Mathematical Society, Vol. 139, No. 5, May 2011, pp. 1533-1541.
George E. Andrews, Three Aspects of Partitions, Séminaire Lotharingien de Combinatoire, B25f (1990), 1 p.
George E. Andrews, On a Partition Function of Richard Stanley, The Electronic Journal of Combinatorics, Volume 11, Issue 2 (2004-6) (The Stanley Festschrift volume), Research Paper #R1.
George E. Andrews and Ken Ono, Ramanujan's congruences and Dyson's crank
George E. Andrews and Ranjan Roy, Ramanujan's Method in q-series Congruences, The Electronic Journal of Combinatorics, Volume 4, Issue 2 (1997) (The Wilf Festschrift volume) > Research Paper #R2.
George E. Andrews, Sumit Kumar Jha, and J. López-Bonilla, Sums of Squares, Triangular Numbers, and Divisor Sums, Journal of Integer Sequences, Vol. 26 (2023), Article 23.2.5.
Riccardo Aragona, Roberto Civino, and Norberto Gavioli, An ultimately periodic chain in the integral Lie ring of partitions, J. Algebr. Comb. (2024). See p. 11.
Joerg Arndt, Matters Computational (The Fxtbook), section 16.4, pp.344-353.
A. O. L. Atkins and F. G. Garvan, Relations between the ranks and cranks of partitions, arXiv:math/0208050 [math.NT], 2002.
Alexander Berkovich and Frank G. Garvan, On the Andrews-Stanley Refinement of Ramanujan's Partition Congruence Modulo 5, arXiv:math/0401012 [math.CO], 2004.
Alexander Berkovich and Frank G. Garvan, On the Andrews-Stanley Refinement of Ramanujan's Partition Congruence Modulo 5 and Generalizations, arXiv:math/0402439 [math.CO], 2004.
Bruce C. Berndt and K. Ono, Ramanujan's Unpublished Manuscript on the Partition and Tau Functions with Proofs and Commentary, Séminaire Lotharingien de Combinatoire, B42c (1999), 63 pp.
Frits Beukers, Ramanujan and The Partition Function (text in Dutch), Pythagoras, Wiskundetijdschrift voor Jongeren, 38ste Jaargang, Nummer 6, Agustus 1999, pp. 15-16.
Henry Bottomley, Partition and composition calculator [broken link]
Kevin S. Brown, Additive Partitions of Numbers [Broken link]
Kevin S. Brown, Additive Partitions of Numbers [Cached copy of lost web page]
Kevin S. Brown's Mathpages, Computing the Partitions of n
Jan Hendrik Bruinier, Amanda Folsom, Zachary A. Kent and Ken Ono, Recent work on the partition function
Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Huantian Cao, AutoGF: An Automated System to Calculate Coefficients of Generating Functions, thesis, 2002 [Local copy, with permission]
Chao-Ping Chen and Hui-Jie Zhang, Padé approximant related to inequalities involving the constant e and a generalized Carleman-type inequality, Journal of Inequalities and Applications, 2017.
Yuriy Choliy and Andrew V. Sills, A formula for the partition function that 'counts'
Lynn Chua and Krishanu Roy Sankar, Equipopularity Classes of 132-Avoiding Permutations, The Electronic Journal of Combinatorics 21(1)(2014), #P59. [Cited by Shalosh B. Ekhad and Doron Zeilberger, 2014] - N. J. A. Sloane, Mar 31 2014
CombOS - Combinatorial Object Server, Generate integer partitions
Jimena Davis and Elizabeth Perez, Computations Of The Partition Function, p(n)
Stephen DeSalvo and Igor Pak, Log-Concavity of the Partition Function, arXiv:1310.7982 [math.CO], 2013-2014.
F. J. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944), 10-15.
Wenjie Fang, Hsien-Kuei Hwang, and Mihyun Kang, Phase transitions from exp(n^(1/2)) to exp(n^(2/3)) in the asymptotics of banded plane partitions, arXiv:2004.08901 [math.CO], 2020.
FindStat - Combinatorial Statistic Finder, Integer partitions
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 41.
Amanda Folsom, Zachary A. Kent and Ken Ono, l-adic properties of the partition function, in press.
Amanda Folsom, Zachary A. Kent and Ken Ono, l-adic properties of the partition function, Adv. Math. 229 (2012) 1586.
Harald Fripertinger, Partitions of an Integer
Bert Fristedt, The structure of random partitions of large integers, Transactions of the American Mathematical Society, 337.2 (1993): 703-735. [A classic paper - N. J. A. Sloane, Aug 27 2018]
GEO magazine, Zahlenspalterei
James Grime and Brady Haran, Partitions, Numberphile video (2016).
Harald Grosse, Alexander Hock, and Raimar Wulkenhaar, A Laplacian to compute intersection numbers on M_(g,n) and correlation functions in NCQFT, arXiv:1903.12526 [math-ph], 2019.
G. H. Hardy and S. Ramanujan, Asymptotic formulas in combinatorial analysis, Proc. London Math. Soc., 17 (1918), 75-115.
A. Hassen and T. J. Olsen, Playing With Partitions On The Computer
Tian-Xiao He, Peter J.-S. Shiue, Zihan Nie, and Minghao Chen, Recursive sequences and Girard-Waring identities with applications in sequence transformation, Electronic Research Archive (2020) Vol. 28, No. 2, 1049-1062.
Alexander D. Healy, Partition Identities
Ferdinand Ihringer, Remarks on the Erdős Matching Conjecture for Vector Spaces, arXiv:2002.06601 [math.CO], 2020.
Fredrik Johansson, Fast arbitrary-precision evaluation of special functions in the Arb library, OPSFA13, NIST, June 2015, page 15.
Jonthan M. Kane, Distribution of orders of Abelian groups, Math. Mag., 49 (1976), 132-135.
Jerome Kelleher and Barry O'Sullivan, Generating All Partitions: A Comparison Of Two Encodings, arXiv:0909.2331 [cs.DS], 2009-2014.
Erica Klarreich, Pieces of Numbers: A proof brings closure to a dramatic tale of partitions and primes, Science News, Week of Jun 18, 2005; Vol. 167, No. 25, p. 392.
Li Wenwei, Estimation of the Partition Number: After Hardy and Ramanujan, arXiv preprint arXiv:1612.05526 [math.NT], 2016-2018.
T. Lockette, Explore Magazine, Path To Partitions
M. MacMahon, Collected Papers of Ramanujan, Table for p(n);n=1 through 200
S. Markovski and M. Mihova, An explicit formula for computing the partition numbers p(n), Math. Balkanica 22 (2008) 101-119 MR2467361
Johannes W. Meijer, Euler's ship on the Pentagonal Sea, pdf and jpg.
Johannes W. Meijer and Manuel Nepveu, Euler's ship on the Pentagonal Sea, Acta Nova, Volume 4, No.1, December 2008. pp. 176-187.
Mircea Merca, Fast algorithm for generating ascending compositions, arXiv:1903.10797 [math.CO], 2019.
Mircea Merca and M. D. Schmidt, The partition function p(n) in terms of the classical Mobius function, Ramanujan J. 49 (1) (2019) 87-96.
István Mező, Several special values of Jacobi theta functions arXiv:1106.2703v3 [math.CA], 2011-2013.
Gerard P. Michon, Partition function
T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
D. J. Newman, A simplified proof of the partition formula, Michigan Math. J. 9:3 (1962), pp. 193-287.
Jean-Louis Nicolas, Sur les entiers N pour lesquels il y a beaucoup de groupes abéliens d’ordre N, Annales de l'Institut Fourier, Tome 28 (1978) no. 4, p. 1-16.
OEIS Wiki, Sorting numbers
Ken Ono, Parity of the partition function, Electron. Res. Announc. Amer. Math. Soc. 1 (1995), 35-42.
Ken Ono, Distribution of the partition function modulo m, Annals Math. 151 (2000), 293-307.
Ken Ono (with J. Bruinier, A. Folsom and Z. Kent), Emory University, Adding and counting
I. Pak, Partition bijections, a survey, Ramanujan J. 12 (2006) 5-75.
Michael Penn, Rogers-Ramanujan Identities, Youtube playlist, 2019, 2020.
Götz Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
Michel Planat, Quantum 1/f Noise in Equilibrium: from Planck to Ramanujan, arXiv:math-ph/0307033, 2003.
W. A. Pribitkin, Revisiting Rademacher's Formula for the Partition Function p(n), The Ramanujan Journal 4(4) 2000.
J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478.
J. D. Rosenhouse, Partitions of Integers
J. D. Rosenhouse, Solutions to Problems
Kate Rudolph, Pattern Popularity in 132-Avoiding Permutations, The Electronic Journal of Combinatorics 20(1)(2013), #P8. [Cited by Shalosh B. Ekhad and Doron Zeilberger, 2014] - N. J. A. Sloane, Mar 31 2014
F. Ruskey, The first 284547 partition numbers (52MB compressed file, archived link)
Zhumagali Shomanov, Combinatorial formula for the partition function, arXiv:1508.03173 [math.CO], 2015.
Cormac O'Sullivan, Detailed asymptotic expansions for partitions into powers, arXiv:2205.13468 [math.NT], 2022-3.
Yi Wang and Bao-Xuan Zhu, Proofs of some conjectures on monotonicity of number-theoretic and combinatorial sequences, arXiv preprint arXiv:1303.5595 [math.CO], 2013.
R. L. Weaver, New Congruences for the Partition Function, The Ramanujan Journal 5(1) 2001.
Eric Weisstein's World of Mathematics, Partition, Partition Function P, q-Pochhammer Symbol, and Ramanujan's Identity
West Sussex Grid for Learning, Multicultural Mathematics, Ramanujan's Partition of Numbers
Thomas Wieder, Comment on A000041
D. J. Wright, Partitions [broken link]
Doron Zeilberger, Noam Zeilberger, Two Questions about the Fractional Counting of Partitions, arXiv:1810.12701 [math.CO], 2018.
Robert M. Ziff, On Cardy's formula for the critical crossing probability in 2d percolation, J. Phys. A. 28, 1249-1255 (1995).
FORMULA
G.f.: Product_{k>0} 1/(1-x^k) = Sum_{k>= 0} x^k Product_{i = 1..k} 1/(1-x^i) = 1 + Sum_{k>0} x^(k^2)/(Product_{i = 1..k} (1-x^i))^2.
G.f.: 1 + Sum_{n>=1} x^n/(Product_{k>=n} 1-x^k). - Joerg Arndt, Jan 29 2011
a(n) - a(n-1) - a(n-2) + a(n-5) + a(n-7) - a(n-12) - a(n-15) + ... = 0, where the sum is over n-k and k is a generalized pentagonal number (A001318) <= n and the sign of the k-th term is (-1)^([(k+1)/2]). See A001318 for a good way to remember this!
a(n) = (1/n) * Sum_{k=0..n-1} sigma(n-k)*a(k), where sigma(k) is the sum of divisors of k (A000203).
a(n) ~ 1/(4*n*sqrt(3)) * e^(Pi * sqrt(2n/3)) as n -> infinity (Hardy and Ramanujan). See A050811.
a(n) = a(0)*b(n) + a(1)*b(n-2) + a(2)*b(n-4) + ... where b = A000009.
From Jon E. Schoenfield, Aug 17 2014: (Start)
It appears that the above approximation from Hardy and Ramanujan can be refined as
a(n) ~ 1/(4*n*sqrt(3)) * e^(Pi * sqrt(2n/3 + c0 + c1/n^(1/2) + c2/n + c3/n^(3/2) + c4/n^2 + ...)), where the coefficients c0 through c4 are approximately
c0 = -0.230420145062453320665537
c1 = -0.0178416569128570889793
c2 = 0.0051329911273
c3 = -0.0011129404
c4 = 0.0009573,
as n -> infinity. (End)
From Vaclav Kotesovec, May 29 2016 (c4 added Nov 07 2016): (Start)
c0 = -0.230420145062453320665536704197233... = -1/36 - 2/Pi^2
c1 = -0.017841656912857088979502135349949... = 1/(6*sqrt(6)*Pi) - sqrt(3/2)/Pi^3
c2 = 0.005132991127342167594576391633559... = 1/(2*Pi^4)
c3 = -0.001112940489559760908236602843497... = 3*sqrt(3/2)/(4*Pi^5) - 5/(16*sqrt(6)*Pi^3)
c4 = 0.000957343284806972958968694349196... = 1/(576*Pi^2) - 1/(24*Pi^4) + 93/(80*Pi^6)
a(n) ~ exp(Pi*sqrt(2*n/3))/(4*sqrt(3)*n) * (1 - (sqrt(3/2)/Pi + Pi/(24*sqrt(6)))/sqrt(n) + (1/16 + Pi^2/6912)/n).
a(n) ~ exp(Pi*sqrt(2*n/3) - (sqrt(3/2)/Pi + Pi/(24*sqrt(6)))/sqrt(n) + (1/24 - 3/(4*Pi^2))/n) / (4*sqrt(3)*n).
(End)
a(n) < exp( (2/3)^(1/2) Pi sqrt(n) ) (Ayoub, p. 197).
G.f.: Product_{m>=1} (1+x^m)^A001511(m). - Vladeta Jovovic, Mar 26 2004
a(n) = Sum_{i=0..n-1} P(i, n-i), where P(x, y) is the number of partitions of x into at most y parts and P(0, y)=1. - Jon Perry, Jun 16 2003
G.f.: Product_{i>=1} Product_{j>=0} (1+x^((2i-1)*2^j))^(j+1). - Jon Perry, Jun 06 2004
G.f. e^(Sum_{k>0} (x^k/(1-x^k)/k)). - Franklin T. Adams-Watters, Feb 08 2006
a(n) = A114099(9*n). - Reinhard Zumkeller, Feb 15 2006
Euler transform of all 1's sequence (A000012). Weighout transform of A001511. - Franklin T. Adams-Watters, Mar 15 2006
a(n) = A027187(n) + A027193(n) = A000701(n) + A046682(n). - Reinhard Zumkeller, Apr 22 2006
A026820(a(n),n) = A134737(n) for n > 0. - Reinhard Zumkeller, Nov 07 2007
Convolved with A152537 gives A000079, powers of 2. - Gary W. Adamson, Dec 06 2008
a(n) = A026820(n, n); a(n) = A108949(n) + A045931(n) + A108950(n) = A130780(n) + A171966(n) - A045931(n) = A045931(n) + A171967(n). - Reinhard Zumkeller, Jan 21 2010
a(n) = Tr(n)/(24*n-1) = A183011(n)/A183010(n), n>=1. See the Bruinier-Ono paper in the Links. - Omar E. Pol, Jan 23 2011
From Jerome Malenfant, Feb 14 2011: (Start)
a(n) = determinant of the n X n Toeplitz matrix:
1 -1
1 1 -1
0 1 1 -1
0 0 1 1 -1
-1 0 0 1 1 -1
. . .
d_n d_(n-1) d_(n-2)...1
where d_q = (-1)^(m+1) if q = m(3m-1)/2 = p_m, the m-th generalized pentagonal number (A001318), otherwise d_q = 0. Note that the 1's run along the diagonal and the -1's are on the superdiagonal. The (n-1) row (not written) would end with ... 1 -1. (End)
Empirical: let F*(x) = Sum_{n=0..infinity} p(n)*exp(-Pi*x*(n+1)), then F*(2/5) = 1/sqrt(5) to a precision of 13 digits.
F*(4/5) = 1/2+3/2/sqrt(5)-sqrt(1/2*(1+3/sqrt(5))) to a precision of 28 digits. These are the only values found for a/b when a/b is from F60, Farey fractions up to 60. The number for F*(4/5) is one of the real roots of 25*x^4 - 50*x^3 - 10*x^2 - 10*x + 1. Note here the exponent (n+1) compared to the standard notation with n starting at 0. - Simon Plouffe, Feb 23 2011
The constant (2^(7/8)*GAMMA(3/4))/(exp(Pi/6)*Pi^(1/4)) = 1.0000034873... when expanded in base exp(4*Pi) will give the first 52 terms of a(n), n>0, the precision needed is 300 decimal digits. - Simon Plouffe, Mar 02 2011
a(n) = A035363(2n). - Omar E. Pol, Nov 20 2009
G.f.: A(x)=1+x/(G(0)-x); G(k) = 1 + x - x^(k+1) - x*(1-x^(k+1))/G(k+1); (continued fraction Euler's kind, 1-step ). - Sergei N. Gladkovskii, Jan 25 2012
Convolution of A010815 with A000712. - Gary W. Adamson, Jul 20 2012
G.f.: 1 + x*(1 - G(0))/(1-x) where G(k) = 1 - 1/(1-x^(k+1))/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 22 2013
G.f.: Q(0) where Q(k) = 1 + x^(4*k+1)/( (x^(2*k+1)-1)^2 - x^(4*k+3)*(x^(2*k+1)-1)^2/( x^(4*k+3) + (x^(2*k+2)-1)^2/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Feb 16 2013
a(n) = 24*spt(n) + 12*N_2(n) - Tr(n) = 24*A092269(n) + 12*A220908(n) - A183011(n), n >= 1. - Omar E. Pol, Feb 17 2013
G.f.: 1/(x; x)_{inf} where (a; q)_k is the q-Pochhammer symbol. - Vladimir Reshetnikov, Apr 24 2013
a(n) = A066186(n)/n, n >= 1. - Omar E. Pol, Aug 16 2013
From Peter Bala, Dec 23 2013: (Start)
a(n-1) = Sum_{parts k in all partitions of n} mu(k), where mu(k) is the arithmetical Möbius function (see A008683).
Let P(2,n) denote the set of partitions of n into parts k >= 2. Then a(n-2) = -Sum_{parts k in all partitions in P(2,n)} mu(k).
n*( a(n) - a(n-1) ) = Sum_{parts k in all partitions in P(2,n)} k (see A138880).
Let P(3,n) denote the set of partitions of n into parts k >= 3. Then
a(n-3) = (1/2)*Sum_{parts k in all partitions in P(3,n)} phi(k), where phi(k) is the Euler totient function (see A000010). Using this result and Mertens's theorem on the average order of the phi function, we can find an approximate 3-term recurrence for the partition function: a(n) ~ a(n-1) + a(n-2) + (Pi^2/(3*n) - 1)*a(n-3). For example, substituting the values a(47) = 124754, a(48) = 147273 and a(49) = 173525 into the recurrence gives the approximation a(50) ~ 204252.48... compared with the true value a(50) = 204226. (End)
a(n) = Sum_{k=1..n+1} (-1)^(n+1-k)*A000203(k)*A002040(n+1-k). - Mircea Merca, Feb 27 2014
a(n) = A240690(n) + A240690(n+1), n >= 1. - Omar E. Pol, Mar 16 2015
From Gary W. Adamson, Jun 22 2015: (Start)
A production matrix for the sequence with offset 1 is M, an infinite n x n matrix of the following form:
a, 1, 0, 0, 0, 0, ...
b, 0, 1, 0, 0, 0, ...
c, 0, 0, 1, 0, 0, ...
d, 0, 0, 0, 1, 0, ...
.
.
... such that (a, b, c, d, ...) is the signed version of A080995 with offset 1: (1,1,0,0,-1,0,-1,...)
and a(n) is the upper left term of M^n.
This operation is equivalent to the g.f. (1 + x + 2x^2 + 3x^3 + 5x^4 + ...) = 1/(1 - x - x^2 + x^5 + x^7 - x^12 - x^15 + x^22 + ...). (End)
G.f.: x^(1/24)/eta(log(x)/(2 Pi i)). - Thomas Baruchel, Jan 09 2016, after Michael Somos (after Richard Dedekind).
a(n) = Sum_{k=-inf..+inf} (-1)^k a(n-k(3k-1)/2) with a(0)=1 and a(negative)=0. The sum can be restricted to the (finite) range from k = (1-sqrt(1-24n))/6 to (1+sqrt(1-24n))/6, since all terms outside this range are zero. - Jos Koot, Jun 01 2016
G.f.: (conjecture) (r(x) * r(x^2) * r(x^4) * r(x^8) * ...) where r(x) is A000009: (1, 1, 1, 2, 2, 3, 4, ...). - Gary W. Adamson, Sep 18 2016; Doron Zeilberger observed today that "This follows immediately from Euler's formula 1/(1-z) = (1+z)*(1+z^2)*(1+z^4)*(1+z^8)*..." Gary W. Adamson, Sep 20 2016
a(n) ~ 2*Pi * BesselI(3/2, sqrt(24*n-1)*Pi/6) / (24*n-1)^(3/4). - Vaclav Kotesovec, Jan 11 2017
G.f.: Product_{k>=1} (1 + x^k)/(1 - x^(2*k)). - Ilya Gutkovskiy, Jan 23 2018
a(n) = p(1, n) where p(k, n) = p(k+1, n) + p(k, n-k) if k < n, 1 if k = n, and 0 if k > n. p(k, n) is the number of partitions of n into parts >= k. - Lorraine Lee, Jan 28 2020
Sum_{n>=1} 1/a(n) = A078506. - Amiram Eldar, Nov 01 2020
Sum_{n>=0} a(n)/2^n = A065446. - Amiram Eldar, Jan 19 2021
From Simon Plouffe, Mar 12 2021: (Start)
Sum_{n>=0} a(n)/exp(Pi*n) = 2^(3/8)*Gamma(3/4)/(Pi^(1/4)*exp(Pi/24)).
Sum_{n>=0} a(n)/exp(2*Pi*n) = 2^(1/2)*Gamma(3/4)/(Pi^(1/4)*exp(Pi/12)).
[corrected by Vaclav Kotesovec, May 12 2023] (End)
[These are the reciprocals of phi(exp(-Pi)) (A259148) and phi(exp(-2*Pi)) (A259149), where phi(q) is the Euler modular function. See B. C. Berndt (RLN, Vol. V, p. 326), and formulas (13) and (14) in I. Mező, 2013. - Peter Luschny, Mar 13 2021]
a(n) = A000009(n) + A035363(n) + A006477(n). - R. J. Mathar, Feb 01 2022
a(n) = A008284(2*n,n) is also the number of partitions of 2n into n parts. - Ryan Brooks, Jun 11 2022
a(n) = A000700(n) + A330644(n). - R. J. Mathar, Jun 15 2022
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)) * (1 + Sum_{r>=1} w(r)/n^(r/2)), where w(r) = 1/(-4*sqrt(6))^r * Sum_{k=0..(r+1)/2} binomial(r+1,k) * (r+1-k) / (r+1-2*k)! * (Pi/6)^(r-2*k) [Cormac O'Sullivan, 2023, pp. 2-3]. - Vaclav Kotesovec, Mar 15 2023
EXAMPLE
a(5) = 7 because there are seven partitions of 5, namely: {1, 1, 1, 1, 1}, {2, 1, 1, 1}, {2, 2, 1}, {3, 1, 1}, {3, 2}, {4, 1}, {5}. - Bob Selcoe, Jul 08 2014
G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + ...
G.f. = 1/q + q^23 + 2*q^47 + 3*q^71 + 5*q^95 + 7*q^119 + 11*q^143 + 15*q^167 + ...
From Gregory L. Simay, Nov 08 2015: (Start)
There are up to a(4)=5 segmented partitions of the partitions of n with exactly 4 parts. They are a(n,4, <4>), a(n,4,<3,1>), a(n,4,<2,2>), a(n,4,<2,1,1>), a(n,4,<1,1,1,1>).
The partition 8,8,8,8 is counted in a(32,4,<4>).
The partition 9,9,9,5 is counted in a(32,4,<3,1>).
The partition 11,11,5,5 is counted in a(32,4,<2,2>).
The partition 13,13,5,1 is counted in a(32,4,<2,1,1>).
The partition 14,9,6,3 is counted in a(32,4,<1,1,1,1>).
a(n odd,4,<2,2>) = 0.
a(12, 6, <2,2,2>) = a(6,3,<1,1,1>) = a(6-3,3) = a(3,3) = 1. The lone partition is 3,3,2,2,1,1.
(End)
MAPLE
A000041 := n -> combinat:-numbpart(n): [seq(A000041(n), n=0..50)]; # Warning: Maple 10 and 11 give incorrect answers in some cases: A110375.
spec := [B, {B=Set(Set(Z, card>=1))}, unlabeled ];
[seq(combstruct[count](spec, size=n), n=0..50)];
with(combstruct):ZL0:=[S, {S=Set(Cycle(Z, card>0))}, unlabeled]: seq(count(ZL0, size=n), n=0..45); # Zerinvary Lajos, Sep 24 2007
G:={P=Set(Set(Atom, card>0))}: combstruct[gfsolve](G, labeled, x); seq(combstruct[count]([P, G, unlabeled], size=i), i=0..45); # Zerinvary Lajos, Dec 16 2007
# Using the function EULER from Transforms (see link at the bottom of the page).
1, op(EULER([seq(1, n=1..49)])); # Peter Luschny, Aug 19 2020
MATHEMATICA
Table[ PartitionsP[n], {n, 0, 45}]
a[ n_] := SeriesCoefficient[ q^(1/24) / DedekindEta[ Log[q] / (2 Pi I)], {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
a[ n_] := SeriesCoefficient[ 1 / Product[ 1 - x^k, {k, n}], {x, 0, n}]; (* Michael Somos, Jul 11 2011 *)
CoefficientList[1/QPochhammer[q] + O[q]^100, q] (* Jean-François Alcover, Nov 25 2015 *)
a[0] := 1; a[n_] := a[n] = Block[{k=1, s=0, i=n-1}, While[i >= 0, s=s-(-1)^k (a[i]+a[i-k]); k=k+1; i=i-(3 k-2)]; s]; Map[a, Range[0, 49]] (* Oliver Seipel, Jun 01 2024 after Euler *)
PROG
(Magma) a:= func< n | NumberOfPartitions(n) >; [ a(n) : n in [0..10]];
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 / eta(x + x * O(x^n)), n))};
(PARI) /* The Hardy-Ramanujan-Rademacher exact formula in PARI is as follows (this is no longer necessary since it is now built in to the numbpart command): */
Psi(n, q) = local(a, b, c); a=sqrt(2/3)*Pi/q; b=n-1/24; c=sqrt(b); (sqrt(q)/(2*sqrt(2)*b*Pi))*(a*cosh(a*c)-(sinh(a*c)/c))
L(n, q) = if(q==1, 1, sum(h=1, q-1, if(gcd(h, q)>1, 0, cos((g(h, q)-2*h*n)*Pi/q))))
g(h, q) = if(q<3, 0, sum(k=1, q-1, k*(frac(h*k/q)-1/2)))
part(n) = round(sum(q=1, max(5, 0.5*sqrt(n)), L(n, q)*Psi(n, q)))
/* Ralf Stephan, Nov 30 2002, fixed by Vaclav Kotesovec, Apr 09 2018 */
(PARI) {a(n) = numbpart(n)};
(PARI) {a(n) = if( n<0, 0, polcoeff( sum( k=1, sqrtint(n), x^k^2 / prod( i=1, k, 1 - x^i, 1 + x * O(x^n))^2, 1), n))};
(PARI) f(n)= my(v, i, k, s, t); v=vector(n, k, 0); v[n]=2; t=0; while(v[1]<n, i=2; while(v[i]==0, i++); v[i]--; s=sum(k=i, n, k*v[k]); while(i>1, i--; s+=i*(v[i]=(n-s)\i)); t++); t \\ Thomas Baruchel, Nov 07 2005
(PARI) a(n)=if(n<0, 0, polcoeff(exp(sum(k=1, n, x^k/(1-x^k)/k, x*O(x^n))), n)) \\ Joerg Arndt, Apr 16 2010
(MuPAD) combinat::partitions::count(i) $i=0..54 // Zerinvary Lajos, Apr 16 2007
(Sage) [number_of_partitions(n) for n in range(46)] # Zerinvary Lajos, May 24 2009
(Sage)
@CachedFunction
def A000041(n):
if n == 0: return 1
S = 0; J = n-1; k = 2
while 0 <= J:
T = A000041(J)
S = S+T if is_odd(k//2) else S-T
J -= k if is_odd(k) else k//2
k += 1
return S
[A000041(n) for n in range(50)] # Peter Luschny, Oct 13 2012
(Sage) # uses[EulerTransform from A166861]
a = BinaryRecurrenceSequence(1, 0)
b = EulerTransform(a)
print([b(n) for n in range(50)]) # Peter Luschny, Nov 11 2020
(Haskell)
import Data.MemoCombinators (memo2, integral)
a000041 n = a000041_list !! n
a000041_list = map (p' 1) [0..] where
p' = memo2 integral integral p
p _ 0 = 1
p k m = if m < k then 0 else p' k (m - k) + p' (k + 1) m
-- Reinhard Zumkeller, Nov 03 2015, Nov 04 2013
(Maxima) num_partitions(60, list); /* Emanuele Munarini, Feb 24 2014 */
(GAP) List([1..10], n->Size(OrbitsDomain(SymmetricGroup(IsPermGroup, n), SymmetricGroup(IsPermGroup, n), \^))); # Attila Egri-Nagy, Aug 15 2014
(Perl) use ntheory ":all"; my @p = map { partitions($_) } 0..100; say "[@p]"; # Dana Jacobsen, Sep 06 2015
(Racket)
#lang racket
; SUM(k, -inf, +inf) (-1)^k p(n-k(3k-1)/2)
; For k outside the range (1-(sqrt(1-24n))/6 to (1+sqrt(1-24n))/6) argument n-k(3k-1)/2 < 0.
; Therefore the loops below are finite. The hash avoids repeated identical computations.
(define (p n) ; Nr of partitions of n.
(hash-ref h n
(λ ()
(define r
(+
(let loop ((k 1) (n (sub1 n)) (s 0))
(if (< n 0) s
(loop (add1 k) (- n (* 3 k) 1) (if (odd? k) (+ s (p n)) (- s (p n))))))
(let loop ((k -1) (n (- n 2)) (s 0))
(if (< n 0) s
(loop (sub1 k) (+ n (* 3 k) -2) (if (odd? k) (+ s (p n)) (- s (p n))))))))
(hash-set! h n r)
r)))
(define h (make-hash '((0 . 1))))
; (for ((k (in-range 0 50))) (printf "~s, " (p k))) runs in a moment.
; Jos Koot, Jun 01 2016
(Python)
from sympy.ntheory import npartitions
print([npartitions(i) for i in range(101)]) # Indranil Ghosh, Mar 17 2017
(Julia) # DedekindEta is defined in A000594
A000041List(len) = DedekindEta(len, -1)
A000041List(50) |> println # Peter Luschny, Mar 09 2018
CROSSREFS
Partial sums give A000070.
For successive differences see A002865, A053445, A072380, A081094, A081095.
Antidiagonal sums of triangle A092905. a(n) = A054225(n,0).
Boustrophedon transforms: A000733, A000751.
Cf. A167376 (complement), A061260 (multisets), A000700 (self-conjug), A330644 (not self-conj).
KEYWORD
core,easy,nonn,nice
EXTENSIONS
Additional comments from Ola Veshta (olaveshta(AT)my-deja.com), Feb 28 2001
Additional comments from Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001
STATUS
approved
a(n) = Sum_{k=0..n} p(k) where p(k) = number of partitions of k (A000041).
(Formerly M1054 N0396)
+10
435
1, 2, 4, 7, 12, 19, 30, 45, 67, 97, 139, 195, 272, 373, 508, 684, 915, 1212, 1597, 2087, 2714, 3506, 4508, 5763, 7338, 9296, 11732, 14742, 18460, 23025, 28629, 35471, 43820, 53963, 66273, 81156, 99133, 120770, 146785, 177970, 215308, 259891, 313065, 376326, 451501
OFFSET
0,2
COMMENTS
Also the total number of all different integers in all partitions of n + 1. E.g., a(3) = 7 because the partitions of 4 comprise the sets {1},{1, 2},{2},{1, 3},{4} of different integers and their total number is 7. - Thomas Wieder, Apr 10 2004
With offset 1, also the number of 1's in all partitions of n. For example, 3 = 2+1 = 1+1+1, a(3) = (zero 1's) + (one 1's) + (three 1's), so a(3) = 4. - Naohiro Nomoto, Jan 09 2002. See the Riordan reference p. 184, last formula, first term, for a proof based on Fine's identity given in Riordan, p. 182 (20).
Also, number of partitions of n into parts when there are two kinds of parts of size one.
Also number of graphical forest partitions of 2n+2.
a(n) = count 2 for each partition of n and 1 for each decrement. E.g., the partitions of 4 are 4 (2), 31 (3), 22 (2), 211 (3) and 1111 (2). 2 + 3 + 2 + 3 + 2 = 12. This is related to the Ferrers representation. We can see that taking the Ferrers diagram for each partition of n and adding a new * to all available columns, we generate each partition of n+1, but with repeats (A058884). - Jon Perry, Feb 06 2004
Also the number of 1-transitions among all integer partitions of n. A 1-transition is the removal of a digit "1" from a partition containing at least one "1" and subsequent addition of that "1" to another digit in that partition. This other digit may be a "1" also, but all digits of equal amount are considered as undistinquishable (unlabeled). E.g., for n=6 one has the partition [1113] for which the following two 1-transitions are possible: [1113] --> [123] and [1113] --> [114]. The 1-transitions of n form a partial order (poset). For n=6 one has 12 1-transitions: [111111] --> [11112], [11112] --> [1113], [11112] --> [1122], [1113] --> [114], [1113] --> [123], [1122] --> [123], [1122] --> [222], [123] --> [33], [123] --> [24], [114] --> [15], [114] --> [24], [15] --> [6]. - Thomas Wieder, Mar 08 2005
Also number of partitions of 2n+1 where one of the parts is greater than n (also where there are more than n parts) and of 2n+2 where one of the parts is greater than n+1 (or with more than n+1 parts). - Henry Bottomley, Aug 01 2005
Equals left border of triangle A137633 - Gary W. Adamson, Jan 31 2008
Equals row sums of triangle A027293. - Gary W. Adamson, Oct 26 2008
Convolved with A010815 = [1,1,1,...]. n-th partial sum of A000041 convolved with A010815 = the binomial sequence starting (1, n, ...). - Gary W. Adamson, Nov 09 2008
Equals A036469 convolved with A035363. - Gary W. Adamson, Jun 09 2009
a(A004526(n)) = A025065(n). - Reinhard Zumkeller, Jan 23 2010
a(n) = if n <= 1 then A054225(1,n) else A054225(n,1). - Reinhard Zumkeller, Nov 30 2011
Also the total number of 1's among all hook-lengths in all partitions of n. E.g., a(4)=7 because hooks of the partitions of n = 4 comprise the multisets {4,3,2,1}, {4,2,1,1}, {3,2,2,1}, {4,1,2,1}, {4,3,2,1} and their total number of 1's is 7. - T. Amdeberhan, Jun 03 2012
With offset 1, a(n) is also the difference between the sum of largest and the sum of second largest elements in all partitions of n. More generally, the number of occurrences of k in all partitions of n equals the difference between the sum of k-th largest and the sum of (k+1)st largest elements in all partitions of n. And more generally, the sum of the number of occurrences of k, k+1, k+2..k+m in all partitions of n equals the difference between the sum of k-th largest and the sum of (k+m+1)st largest elements in all partitions of n. - Omar E. Pol, Oct 25 2012
a(0) = 1 and 2*a(n-1) >= a(n) for all n > 0. Hence a(n) is a complete sequence. - Frank M Jackson, Apr 08 2013
a(n) is the number of conjugacy classes in the order-preserving, order-decreasing and (order-preserving and order-decreasing) injective transformation semigroups. - Ugbene Ifeanyichukwu, Jun 03 2015
a(n) is also the number of unlabeled subgraphs of the n-cycle C_n. For example, for n = 3, there are 3 unlabeled subgraphs of the triangle C_3 with 0 edges, 2 with 1 edge, 1 with 2 edges, and 1 with 3 edges (C_3 itself), so a(3) = 3 + 2 + 1 + 1 = 7. - John P. McSorley, Nov 21 2016
a(n) is also the number of partitions of 2n with all parts either even or equal to 1. Proof: the number of such partitions of 2n with exactly 2k 1's is p(n-k), for k = 0,..,n. Summing over k gives the formula. - Leonard Chastkofsky, Jul 24 2018
a(n) is the total number of polygamma functions that appear in the expansion of the (n+1)st derivative of x! with respect to x. More specifically, a(n) is the number of times the string "PolyGamma" appears in the expansion of D[x!, {x, n + 1}] in Mathematica. For example, D[x!, {x, 3 + 1}] = Gamma[1 + x] PolyGamma[0, 1 + x]^4 + 6 Gamma[1 + x] PolyGamma[0, 1 + x]^2 PolyGamma[1, 1 + x] + 3 Gamma[1 + x] PolyGamma[1, 1 + x]^2 + 4 Gamma[1 + x] PolyGamma[0, 1 + x] PolyGamma[2, 1 + x] + Gamma[1 + x] PolyGamma[3, 1 + x], and we see that the string "PolyGamma" appears a total of a(3) = 7 times in this expansion. - John M. Campbell, Aug 11 2018
With offset 1, also the number of integer partitions of 2n that do not comprise the multiset of vertex-degrees of any multigraph (i.e., non-multigraphical partitions); see A209816 for multigraphical partitions. - Gus Wiseman, Oct 26 2018
Also a(n) is the number of partitions of 2n+1 with exactly one odd part.
Delete the odd part 2k+1, k=0, ..., n, to get a partition of 2n-2k into even parts. There are as many unrestricted partitions of n-k; now sum those numbers from 0 to n to get a(n). - George Beck, Jul 22 2019
In the Young's lattice, a(n) is the number of branches that connect the (n-1)-th layer to the n-th layer. - Shouvik Datta, Sep 19 2021
a(n) is the number of multiset partitions of the multiset {r^n, s^1}, equivalently, factorization patterns of any number m=p^n*q^1 where p and q are primes. - Joerg Arndt, Jan 01 2024
a(n) is the number of positive integers whose divisors are the parts of the partitions of n + 1. - Omar E. Pol, Nov 07 2024
REFERENCES
H. Gupta, An asymptotic formula in partitions. J. Indian Math. Soc., (N. S.) 10 (1946), 73-76.
H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 6.
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
A. M. Odlyzko, Asymptotic Enumeration Methods, p. 19
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Stanley, R. P., Exercise 1.26 in Enumerative Combinatorics, Vol. 1. Cambridge, England: Cambridge University Press, p. 59, 1999.
LINKS
P. A. Baikov and S. V. Mikhailov, The {beta}-expansion for Adler function, Bjorken Sum Rule, and the Crewther-Broadhurst-Kataev relation at order O(alpha_s^4), J. High Energy Phys. 09 (2022) Art. No. 185. See also arXiv:2206.14063 [hep-ph], 2022.
Kevin Beanland and Hung Viet Chu, On Schreier-type Sets, Partitions, and Compositions, arXiv:2311.01926 [math.CO], 2023.
David Benson, Radha Kessar, and Markus Linckelmann, Hochschild cohomology of symmetric groups in low degrees, arXiv:2204.09970 [math.GR], 2022.
Philip Boalch, Counting the fission trees and nonabelian Hodge graphs, arXiv:2410.23358 [math.AG], 2024. See p. 15.
L. Bracci and L. E. Picasso, A simple iterative method to write the terms of any order of perturbation theory in quantum mechanics, The European Physical Journal Plus, 127 (2012), Article 119. - From N. J. A. Sloane, Dec 31 2012
Emmanuel Briand, Samuel A. Lopes, and Mercedes Rosas, Normally ordered forms of powers of differential operators and their combinatorics, arXiv:1811.00857 [math.CO], 2018.
C. C. Cadogan, On partly ordered partitions of a positive integer, Fib. Quart., 9 (1971), 329-336.
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers, National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956. (Annotated scanned pages from, plus a review)
Mario De Salvo, Dario Fasino, Domenico Freni and Giovanni Lo Faro, A Family of 0-Simple Semihypergroups Related to Sequence A000070, Journal of Multiple-Valued Logic & Soft Computing, 2016, Vol. 27, Issue 5/6, pp. 553-572.
Mario De Salvo, Dario Fasino, Domenico Freni, and Giovanni Lo Faro, Semihypergroups Obtained by Merging of 0-semigroups with Groups, Filomat 32(12) (2018), 4177-4194.
P. Flajolet and B. Salvy, Euler sums and contour integral representations, Experimental Mathematics, 7(1) (1998), 15-35.
D. Frank, C. D. Savage and J. A. Sellers, On the Number of Graphical Forest Partitions, Ars Combinatoria, Vol. 65 (2002), 33-37.
D. Frank, C. D. Savage and J. A. Sellers, On the Number of Graphical Forest Partitions, preprint.
Manosij Ghosh Dastidar and Sourav Sen Gupta, Generalization of a few results in Integer Partitions, arXiv preprint arXiv:1111.0094 [cs.DM], 2011.
Petros Hadjicostas, Cyclic, Dihedral and Symmetrical Carlitz Compositions of a Positive Integer, Journal of Integer Sequences, 20 (2017), Article #17.8.5.
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]
M. D. Hirschhorn, The number of 1's in the partitions of n, Fib. Quart., 51 (2013), 326-329.
M. D. Hirschhorn, The number of different parts in the partitions of n, Fib. Quart., 52 (2014), 10-15. See p. 11. - N. J. A. Sloane, Mar 25 2014
Mikhailov, S. V. On a realization of beta-expansion in QCD, J. High Energy Phys. 2017, No. 4, Paper No. 169, 16 p. (2017).
M. M. Mogbonju, O. A. Ojo, and I. A. Ogunleke, Graphical Representation of Conjugacy Classes in the Order-Preserving Partial One-One Transformation Semigroup, International Journal of Science and Research (IJSR), 3(12) (2014), 711-721.
G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
Maria Schuld, Kamil Brádler, Robert Israel, Daiqin Su, and Brajesh Gupt, A quantum hardware-induced graph kernel based on Gaussian Boson Sampling, arXiv:1905.12646 [quant-ph], 2019.
N. J. A. Sloane, Transforms
I. J. Ugbene, E. O. Eze, and S. O. Makanjuola, On the Number of Conjugacy Classes in the Injective Order-Decreasing Transformation Semigroup, Pacific Journal of Science and Technology, 14(1) (2013), 182-186.
Ifeanyichukwu Jeff Ugbene, Gatta Naimat Bakare, and Garba Risqot Ibrahim, Conjugacy classes of the order-preserving and order-decreasing partial one-to-one transformation semigroups, Journal of Science, Technology, Mathematics and Education (JOSTMED), 15(2) (2019), 83-88.
Joseph Vandehey, Digital problems in the theory of partitions, Integers (2024) Vol. 24A, Art. No. A18. See p. 3.
Eric Weisstein's World of Mathematics, Stanley's Theorem.
FORMULA
Euler transform of [ 2, 1, 1, 1, 1, 1, 1, ...].
log(a(n)) ~ -3.3959 + 2.44613*sqrt(n). - Robert G. Wilson v, Jan 11 2002
a(n) = (1/n)*Sum_{k=1..n} (sigma(k)+1)*a(n-k), n > 1, a(0) = 1. - Vladeta Jovovic, Aug 22 2002
G.f.: (1/(1 - x))*Product_{m >= 1} 1/(1 - x^m).
a(n) seems to have the same parity as A027349(n+1). Comment from James A. Sellers, Mar 08 2006: that is true.
a(n) = A000041(2n+1) - A110618(2n+1) = A000041(2n+2) - A110618(2n+2). - Henry Bottomley, Aug 01 2005
Row sums of triangle A133735. - Gary W. Adamson, Sep 22 2007
a(n) = A092269(n+1) - A195820(n+1). - Omar E. Pol, Oct 20 2011
a(n) = A181187(n+1,1) - A181187(n+1,2). - Omar E. Pol, Oct 25 2012
From Peter Bala, Dec 23 2013: (Start)
Gupta gives the asymptotic result a(n-1) ~ sqrt(6/Pi^2)* sqrt(n)*p(n), where p(n) is the partition function A000041(n).
Let P(2,n) denote the set of partitions of n into parts k >= 2.
a(n-2) = Sum_{parts k in all partitions in P(2,n)} phi(k), where phi(k) is the Euler totient function (see A000010). Using this result and Mertens's theorem on the average order of the phi function, leads to the asymptotic result
a(n-2) ~ (6/Pi^2)*n*(p(n) - p(n-1)) = (6/Pi^2)*A138880(n) as n -> infinity. (End)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(3/2)*Pi*sqrt(n)) * (1 + 11*Pi/(24*sqrt(6*n)) + (73*Pi^2 - 1584)/(6912*n)). - Vaclav Kotesovec, Oct 26 2016
a(n) = A024786(n+2) + A024786(n+1). - Vaclav Kotesovec, Nov 05 2016
G.f.: exp(Sum_{k>=1} (sigma_1(k) + 1)*x^k/k). - Ilya Gutkovskiy, Aug 21 2018
a(n) = A025065(2n). - Gus Wiseman, Oct 26 2018
a(n - 1) = A000041(2n) - A209816(n). - Gus Wiseman, Oct 26 2018
EXAMPLE
G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 19*x^5 + 30*x^6 + 45*x^7 + 67*x^8 + ...
From Omar E. Pol, Oct 25 2012: (Start)
For n = 5 consider the partitions of n+1:
--------------------------------------
. Number
Partitions of 6 of 1's
--------------------------------------
6 .......................... 0
3 + 3 ...................... 0
4 + 2 ...................... 0
2 + 2 + 2 .................. 0
5 + 1 ...................... 1
3 + 2 + 1 .................. 1
4 + 1 + 1 .................. 2
2 + 2 + 1 + 1 .............. 2
3 + 1 + 1 + 1 .............. 3
2 + 1 + 1 + 1 + 1 .......... 4
1 + 1 + 1 + 1 + 1 + 1 ...... 6
------------------------------------
35-16 = 19
.
The difference between the sum of the first column and the sum of the second column of the set of partitions of 6 is 35 - 16 = 19 and equals the number of 1's in all partitions of 6, so the 6th term of this sequence is a(5) = 19.
(End)
From Gus Wiseman, Oct 26 2018: (Start)
With offset 1, the a(1) = 1 through a(6) = 19 partitions of 2*n whose greatest part is > n:
(2) (4) (6) (8) (A) (C)
(31) (42) (53) (64) (75)
(51) (62) (73) (84)
(411) (71) (82) (93)
(521) (91) (A2)
(611) (622) (B1)
(5111) (631) (732)
(721) (741)
(811) (822)
(6211) (831)
(7111) (921)
(61111) (A11)
(7221)
(7311)
(8211)
(9111)
(72111)
(81111)
(711111)
With offset 1, the a(1) = 1 through a(6) = 19 partitions of 2*n whose number of parts is > n:
(11) (211) (2211) (22211) (222211) (2222211)
(1111) (3111) (32111) (322111) (3222111)
(21111) (41111) (331111) (3321111)
(111111) (221111) (421111) (4221111)
(311111) (511111) (4311111)
(2111111) (2221111) (5211111)
(11111111) (3211111) (6111111)
(4111111) (22221111)
(22111111) (32211111)
(31111111) (33111111)
(211111111) (42111111)
(1111111111) (51111111)
(222111111)
(321111111)
(411111111)
(2211111111)
(3111111111)
(21111111111)
(111111111111)
(End)
From Joerg Arndt, Jan 01 2024: (Start)
The a(5) = 19 multiset partitions of the multiset {1^5, 2^1} are:
1: {{1, 1, 1, 1, 1, 2}}
2: {{1, 1, 1, 1, 1}, {2}}
3: {{1, 1, 1, 1, 2}, {1}}
4: {{1, 1, 1, 1}, {1, 2}}
5: {{1, 1, 1, 1}, {1}, {2}}
6: {{1, 1, 1, 2}, {1, 1}}
7: {{1, 1, 1, 2}, {1}, {1}}
8: {{1, 1, 1}, {1, 1, 2}}
9: {{1, 1, 1}, {1, 1}, {2}}
10: {{1, 1, 1}, {1, 2}, {1}}
11: {{1, 1, 1}, {1}, {1}, {2}}
12: {{1, 1, 2}, {1, 1}, {1}}
13: {{1, 1, 2}, {1}, {1}, {1}}
14: {{1, 1}, {1, 1}, {1, 2}}
15: {{1, 1}, {1, 1}, {1}, {2}}
16: {{1, 1}, {1, 2}, {1}, {1}}
17: {{1, 1}, {1}, {1}, {1}, {2}}
18: {{1, 2}, {1}, {1}, {1}, {1}}
19: {{1}, {1}, {1}, {1}, {1}, {2}}
(End)
MAPLE
with(combinat): a:=n->add(numbpart(j), j=0..n): seq(a(n), n=0..44); # Zerinvary Lajos, Aug 26 2008
MATHEMATICA
CoefficientList[ Series[1/(1 - x)*Product[1/(1 - x^k), {k, 75}], {x, 0, 45}], x] (* Robert G. Wilson v, Jul 13 2004 *)
Table[ Count[ Flatten@ IntegerPartitions@ n, 1], {n, 45}] (* Robert G. Wilson v, Aug 06 2008 *)
Join[{1}, Accumulate[PartitionsP[Range[50]]]+1] (* _Harvey P. Dale, Mar 12 2013 *)
a[ n_] := SeriesCoefficient[ 1 / (1 - x) / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Nov 09 2013 *)
Accumulate[PartitionsP[Range[0, 49]]] (* George Beck, Oct 23 2014; typo fixed by Virgile Andreani, Jul 10 2016 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 / prod(m=1, n, 1 - x^m, 1 + x * O(x^n)) / (1 - x), n))}; /* Michael Somos, Nov 08 2002 */
(PARI) x='x+O('x^66); Vec(1/((1-x)*eta(x))) /* Joerg Arndt, May 15 2011 */
(PARI) a(n) = sum(k=0, n, numbpart(k)); \\ Michel Marcus, Sep 16 2016
(Haskell)
a000070 = p a028310_list where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Nov 06 2012
(Sage)
def A000070_list(leng):
p = [number_of_partitions(n) for n in range(leng)]
return [add(p[:k+1]) for k in range(leng)]
A000070_list(45) # Peter Luschny, Sep 15 2014
(GAP) List([0..45], n->Sum([0..n], k->NrPartitions(k))); # Muniru A Asiru, Jul 25 2018
(Python)
from itertools import accumulate
def A000070iter(n):
L = [0]*n; L[0] = 1
def numpart(n):
S = 0; J = n-1; k = 2
while 0 <= J:
T = L[J]
S = S+T if (k//2)%2 else S-T
J -= k if (k)%2 else k//2
k += 1
return S
for j in range(1, n): L[j] = numpart(j)
return accumulate(L)
print(list(A000070iter(100))) # Peter Luschny, Aug 30 2019
(Python) # Using function A365676Row. Compare also A365675.
from itertools import accumulate
def A000070List(size: int) -> list[int]:
return [sum(accumulate(reversed(A365676Row(n)))) for n in range(size)]
print(A000070List(45)) # Peter Luschny, Sep 16 2023
CROSSREFS
A diagonal of A066633.
Also second column of A126442. - George Beck, May 07 2011
Row sums of triangle A092905.
Also row sums of triangle A261555. - Omar E. Pol, Sep 14 2016
Also row sums of triangle A278427. - John P. McSorley, Nov 25 2016
Column k=2 of A292508.
KEYWORD
nonn,easy,nice
STATUS
approved
a(n) = binomial(n, floor(n/2)).
(Formerly M0769 N0294)
+10
434
1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 462, 924, 1716, 3432, 6435, 12870, 24310, 48620, 92378, 184756, 352716, 705432, 1352078, 2704156, 5200300, 10400600, 20058300, 40116600, 77558760, 155117520, 300540195, 601080390, 1166803110
OFFSET
0,3
COMMENTS
Sperner's theorem says that this is the maximal number of subsets of an n-set such that no one contains another.
When computed from index -1, [seq(binomial(n,floor(n/2)), n = -1..30)]; -> [1,1,1,2,3,6,10,20,35,70,126,...] and convolved with aerated Catalan numbers [seq(((n+1) mod 2)*binomial(n,n/2)/((n/2)+1), n = 0..30)]; -> [1,0,1,0,2,0,5,0,14,0,42,0,132,0,...] shifts left by one: [1,1,2,3,6,10,20,35,70,126,252,...] and if again convolved with aerated Catalan numbers, gives A037952 apart from the initial term. - Antti Karttunen, Jun 05 2001 [This is correct because the g.f.'s satisfy (1+x*g001405(x))*g126120(x) = g001405(x) and g001405(x)*g126120(x) = g037952(x)/x. - R. J. Mathar, Sep 23 2021]
Number of ordered trees with n+1 edges, having nonroot nodes of outdegree 0 or 2. - Emeric Deutsch, Aug 02 2002
Gives for n >= 1 the maximum absolute column sum norm of the inverse of the Vandermonde matrix (a_ij) i=0..n-1, j=0..n-1 with a_00=1 and a_ij=i^j for (i,j) != (0,0). - Torsten Muetze, Feb 06 2004
Image of Catalan numbers A000108 under the Riordan array (1/(1-2x),-x/(1-2x)) or A065109. - Paul Barry, Jan 27 2005
Number of left factors of Dyck paths, consisting of n steps. Example: a(4)=6 because we have UDUD, UDUU, UUDD, UUDU, UUUD and UUUU, where U=(1,1) and D=(1,-1). - Emeric Deutsch, Apr 23 2005
Number of dispersed Dyck paths of length n; they are defined as concatenations of Dyck paths and (1,0)-steps on the x-axis; equivalently, Motzkin paths with no (1,0)-steps at positive height. Example: a(4)=6 because we have HHHH, HHUD, HUDH, UDHH, UDUD, and UUDD, where U=(1,1), H=(1,0), and D=(1,-1). - Emeric Deutsch, Jun 04 2011
a(n) is odd iff n=2^k-1. - Jon Perry, May 05 2005
An inverse Chebyshev transform of binomial(1,n)=(1,1,0,0,0,...) where g(x)->(1/sqrt(1-4*x^2))*g(x*c(x^2)), with c(x) the g.f. of A000108. - Paul Barry, May 13 2005
In a random walk on the number line, starting at 0 and with 0 absorbing after the first step, number of ways of ending up at a positive integer after n steps. - Joshua Zucker, Jul 31 2005
Maximum number of sums of the form Sum_{i=1..n} e(i)*a(i) that are congruent to 0 mod q, where e_i=0 or 1 and gcd(a_i,q)=1, provided that q > ceiling(n/2). - Ralf Stephan, Apr 27 2003
Also the number of standard tableaux of height <= 2. - Mike Zabrocki, Mar 24 2007
Hankel transform of this sequence forms A000012 = [1,1,1,1,1,1,1,...]. - Philippe Deléham, Oct 24 2007
A001263 * [1, -2, 3, -4, 5, ...] = [1, -1, -2, 3, 6, -10, -20, 35, 70, -126, ...]. - Gary W. Adamson, Jan 02 2008
Equals right border of triangle A153585. - Gary W. Adamson, Dec 28 2008
Second binomial transform of A168491. - Philippe Deléham, Nov 27 2009
a(n) is also the number of distinct strings of length n, each of which is a prefix of a string of balanced parentheses; see example. - Lee A. Newberg, Apr 26 2010
Number of symmetric balanced strings of n pairs of parentheses; see example. - Joerg Arndt, Jul 25 2011
a(n) is the number of permutation patterns modulo 2. - Olivier Gérard, Feb 25 2011
For n >= 2, a(n-1) is the number of incongruent two-color bracelets of 2*n-1 beads, n of which are black (A007123), having a diameter of symmetry. - Vladimir Shevelev, May 03 2011
The number of permutations of n elements where p(k-2) < p(k) for all k. - Joerg Arndt, Jul 23 2011
Also size of the equivalence class of S_{n+1} containing the identity permutation under transformations of positionally adjacent elements of the form abc <--> cba where a < b < c, cf. A210668. - Tom Roby, May 15 2012
a(n) is the number of symmetric Dyck paths of length 2n. - Matt Watson, Sep 26 2012
a(n) is divisible by A000108(floor(n/2)) = abs(A129996(n-2)). - Paul Curtz, Oct 23 2012
a(n) is the number of permutations of length n avoiding both 213 and 231 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
Number of symmetric standard Young tableaux of shape (n,n). - Ran Pan, Apr 10 2015
From Luciano Ancora, May 09 2015: (Start)
Also "stepped path" in the array formed by partial sums of the all 1's sequence (or a Pascal's triangle displayed as a square). Example:
[1], [1], 1, 1, 1, 1, 1, ... A000012
1, [2], [3], 4, 5, 6, 7, ...
1, 3, [6], [10], 15, 21, 28, ...
1, 4, 10, [20], [35], 56, 84, ...
1, 5, 15, 35, [70], [126], 210, ...
Sequences in second formula are the mixed diagonals shown in this array. (End)
a(n) = A265848(n,n). - Reinhard Zumkeller, Dec 24 2015
The constant Sum_{n >= 0} a(n)/n! is 1 + A130820. - Peter Bala, Jul 02 2016
Number of meanders (walks starting at the origin and ending at any altitude >= 0 that may touch but never go below the x-axis) with n steps from {-1,1}. - David Nguyen, Dec 20 2016
a(n) is also the number of paths of n steps (either up or down by 1) that end at the maximal value achieved along the path. - Winston Luo, Jun 01 2017
Number of binary n-tuples such that the number of 1's in the even positions is the same as the number of 1's in the odd positions. - Juan A. Olmos, Dec 21 2017
Equivalently, a(n) is the number of subsets of {1,...,n} containing as many even numbers as odd numbers. - Gus Wiseman, Mar 17 2018
a(n) is the number of Dyck paths with semilength = n+1, returns to the x-axis = floor((n+3)/2) and up movements in odd positions = floor((n+3)/2). Example: a(4)=6, U=up movement in odd position, u=up movement in even position, d=down movement, -=return to x-axis: Uududd-Ud-Ud-, Ud-Uudd-Uudd-, Uudd-Uudd-Ud-, Ud-Ud-Uududd-, Uudd-Ud-Uudd-, Ud-Uududd-Ud-. - Roger Ford, Dec 29 2017
Let C_n(R, H) denote the transition matrix from the ribbon basis to the homogeneous basis of the graded component of the algebra of noncommutative symmetric functions of order n. Letting I(2^(n-1)) denote the identity matrix of order 2^(n-1), it has been conjectured that the dimension of the kernel of C_n(R, H) - I(2^(n-1)) is always equal to a(n-1). - John M. Campbell, Mar 30 2018
The number of U-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are U-equivalent iff the positions of pattern U are identical in these paths. - Sergey Kirgizov, Apr 2018
All binary self-dual codes of length 2n, for n > 0, must contain at least a(n) codewords of weight n. More to the point, there will always be at least one, perhaps unique, binary self-dual code of length 2n that will contain exactly a(n) codewords that have a hamming weight equal to half the length of the code (n). This code can be constructed by direct summing the unique binary self-dual code of length 2 (up to permutation equivalence) to itself n times. A permutation equivalent code can be constructed by augmenting two identity matrices of length n together. - Nathan J. Russell, Nov 25 2018
Closed under addition. - Torlach Rush, Apr 18 2019
The sequence starting (1, 2, 3, 6, ...) is the invert transform of A097331: (1, 1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, ...). - Gary W. Adamson, Feb 22 2020
From Gary W. Adamson, Feb 24 2020: (Start)
The sequence is the culminating limit of an infinite set of sequences with convergents of 2*cos(Pi/N), N = (3, 5, 7, 9, ...).
The first few such sequences are:
N = 3: (1, 1, 1, 1, 1, 1, 1, 1, ...)
N = 5: (1, 1, 2, 3, 5, 8, 13, 21, ...) = A000045
N = 7: (1, 1, 2, 3, 6, 10, 19, 33, ...) = A028495, a(n)/a(n-1) tends to 1.801937...
N = 9 (1, 1, 2, 3, 6, 10, 20, 35, ...) = A061551, a(n)/a(n_1) tends to 1.879385...
...
In the limit one gets the current sequence with ratio 2. (End)
a(n) is also the number of monotone lattice paths from (0,0) to (floor(n/2),ceiling(n/2)). These are the number of Grand Dyck paths when n is even. - Nachum Dershowitz, Aug 12 2020
The maximum number of preimages that a permutation of length n+1 can have under the consecutive-132-avoiding stack-sorting map. - Colin Defant, Aug 28 2020
Counts faro permutations of length n. Faro permutations are permutations avoiding the three consecutive patterns 231, 321 and 312. They are obtained by a perfect faro shuffle of two nondecreasing words of lengths differing by at most one. - Sergey Kirgizov, Jan 12 2021
Per "Sperner's Theorem", the largest possible familes of finite sets none of which contain any other sets in the family. - Renzo Benedetti, May 26 2021
a(n-1) are the incomplete, primitive Dyck paths of n steps without a first return: paths of U and D steps starting at the origin, never touching the horizontal axis later on, and ending above the horizontal axis. n=1: {U}, n=2: {UU}, n=3: {UUU, UUD}, n=4: {UUUU, UUUD, UUDU}, n=5: {UUUUU, UUUUD, UUUDD, UUDUU, UUUDU, UUDUD}. For comparison: A037952 counts incomplete Dyck paths with n steps with any number of intermediate returns to the horizontal axis, ending above the horizontal axis. - R. J. Mathar, Sep 24 2021
a(n) is the number of noncrossing partitions of [n] whose nontrivial blocks are of type {a,b}, with a <= n/2, b > n/2. - Francesca Aicardi, May 29 2022
Maximal coefficient of (1+x)^n. - Vaclav Kotesovec, Dec 30 2022
Sums of lower-left-to-upper-right diagonals of the Catalan Triangle A001263. - Howard A. Landman, Sep 16 2024
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 1999; see p. 135.
K. Engel, Sperner Theory, Camb. Univ. Press, 1997; Theorem 1.1.1.
P. Frankl, Extremal sets systems, Chap. 24 of R. L. Graham et al., eds, Handbook of Combinatorics, North-Holland.
J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 7.16(b), p. 452.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0 to 200 computed by T. D. Noe)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math., Series 55, Tenth Printing, 1972.
M. Aigner, Enumeration via ballot numbers, Discrete Math., Vol. 308 (2008), pp. 2544-2563.
A. Asinowski and G. Rote, Point sets with many non-crossing matchings, arXiv preprint arXiv:1502.04925 [cs.CG], 2015.
Shaun V. Ault and Charles Kicey, Counting paths in corridors using circular Pascal arrays, Discrete Mathematics, Volume 332 (October 2014), Pages 45-54.
Armen G. Bagdasaryan and Ovidiu Bagdasar, On some results concerning generalized arithmetic triangles, Electronic Notes in Discrete Mathematics, Vol. 67 (2018), pp. 71-77.
Taylor Ball, David Galvin, Katie Hyry, and Kyle Weingartner, Independent set and matching permutations, arXiv:1901.06579 [math.CO], 2019.
C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016.
Elena Barcucci, Antonio Bernini, and Renzo Pinzani, Exhaustive generation of positive lattice paths, Semantic Sensor Networks Workshop 2018, CEUR Workshop Proceedings (2018) Vol. 2113.
Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018.
Jean-Luc Baril and A. Petrossian, Equivalence Classes of Motzkin Paths Modulo a Pattern of Length at Most Two, J. Int. Seq., Vol. 18 (2015), Article 15.7.1.
Jean-Luc Baril, Alexander Burstein, and Sergey Kirgizov, Pattern statistics in faro words and permutations, arXiv:2010.06270 [math.CO], 2020. See Table 1.
Paul Barry, A Note on a One-Parameter Family of Catalan-Like Numbers, JIS, Vol. 12 (2009), Article 09.5.4.
Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.
Paul Barry and A. Hennessy, Four-term Recurrences, Orthogonal Polynomials and Riordan Arrays, Journal of Integer Sequences, Vol. 15 (2012), Article 12.4.2. - From N. J. A. Sloane, Sep 21 2012
F. Bergeron, L. Favreau and D. Krob, Conjectures on the enumeration of tableaux of bounded height, Discrete Math, Vol. 139, No. 1-3 (1995), pp. 463-468.
Miklós Bóna, Cheyne Homberger, Jay Pantone, and Vince Vatter, Pattern-avoiding involutions: exact and asymptotic enumeration, arxiv:1310.7003 [math.CO], 2013.
A. Bostan, Computer Algebra for Lattice Path Combinatorics, Seminaire de Combinatoire Ph. Flajolet, March 28 2013.
Alin Bostan and Manuel Kauers, Automatic Classification of Restricted Lattice Walks, arXiv:0811.2899 [math.CO], 2009.
Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, and Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
J. M. Campbell, The expansion of immaculate functions in the ribbon basis, Discrete Math., Vol. 340 (2017), pp. 1716-1726.
Colin Defant and Kai Zheng, Stack-Sorting with Consecutive-Pattern-Avoiding Stacks, arXiv:2008.12297 [math.CO], 2020.
Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
F. Disanto, A. Frosini, and S. Rinaldi, Square involutions, J. Int. Seq. 14 (2011) # 11.3.5.
F. Disanto and S. Rinaldi, Symmetric convex permutominoes and involutions, PU. M. A., Vol. 22, No. 1 (2011), pp. 39-60.
Justine Falque, Jean-Christophe Novelli, and Jean-Yves Thibon, Pinnacle sets revisited, arXiv:2106.05248 [math.CO], 2021.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 77.
J. R. Griggs, On the distribution of sums of residues, arXiv:math/9304211 [math.NT], 1993.
O. Guibert and T. Mansour, Restricted 132-involutions, Séminaire Lotharingien de Combinatoire, B48a, 23 pp, 2002.
H. Gupta, Enumeration of incongruent cyclic k-gons, Indian J. Pure and Appl. Math., Vol. 10, No. 8 (1979), pp. 964-999.
R. K. Guy, Catwalks, Sandsteps and Pascal Pyramids, J. Integer Seq., Vol. 3 (2000), Article 00.1.6.
Zachary Hamaker and Eric Marberg, Atoms for signed permutations, arXiv:1802.09805 [math.CO], 2018.
F. Harary and R. W. Robinson, The number of achiral trees, Jnl. Reine Angewandte Mathematik, Vol. 278 (1975), pp. 322-335. (Annotated scanned copy)
Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct 2011.
Zoe M. Himwich and Noah A. Rosenberg, Roadblocked monotonic paths and the enumeration of coalescent histories for non-matching caterpillar gene trees and species trees, arXiv:1901.04465 [q-bio.pE] (2019); Adv. Appl. Math. 113 (2020), 101939.
Cheyne Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv preprint 1410.2657 [math.CO], 2014.
W. Cary Huffman and Vera Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003, Pages 7, 252-282, 338-393.
Christian Krattenthaler and Daniel Yaqubi, Some determinants of path generating functions, II, Adv. Appl. Math., Vol. 101 (2018), pp. 232-265.
Jean-Philippe Labbé and Carsten Lange, Cambrian acyclic domains: counting c-singletons, arXiv:1802.07978 [math.CO], 2018.
J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
P. Leroux and E. Rassart, Enumeration of Symmetry Classes of Parallelogram Polyominoes, arXiv:math/9901135 [math.CO], 1999.
Steven Linton, James Propp, Tom Roby, and Julian West, Equivalence Classes of Permutations under Various Relations Generated by Constrained Transpositions, Journal of Integer Sequences, Vol. 15 (2012), Article 12.9.1.
D. Lubell, A short proof of Sperner's lemma, J. Combin. Theory, Vol. 1 (1966), p. 299.
Piera Manara and Claudio Perelli Cippo, The fine structure of 4321 avoiding involutions and 321 avoiding involutions, PU. M. A. Vol. 22 (2011), pp. 227-238.
Eric Marberg and Brendan Pawlowski, Stanley symmetric functions for signed involutions, arXiv:1806.11208 [math.CO], 2018.
D. Merlini, Generating functions for the area below some lattice paths, Discrete Mathematics and Theoretical Computer Science AC, 2003, 217-228.
T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
M. A. Narcowich, Problem 73-6, SIAM Review, Vol. 16, No. 1, 1974, p. 97.
Ran Pan, Exercise P, Project P.
Saulo Queiroz, João Vilela, and Edmundo Monteiro, What is the Cost of the Index Selector Task for OFDM with Index Modulation?, 2019 Wireless Days (WD).
Saulo Queiroz, João P. Vilela, and Edmundo Monteiro, Optimal Mapper for OFDM with Index Modulation: A Spectro-Computational Analysis, arXiv:2002.09382 [eess.SP], 2020. See also IEEE Access (2020) Vol. 8, 68365-68378.
Alon Regev, Amitai Regev, and Doron Zeilberger, Identities in character tables of S_n, arXiv preprint arXiv:1507.03499 [math.CO], 2015.
R. W. Robinson, F. Harary and A. T. Balaban, Numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron, Vol. 32, No. 3 (1976), pp. 355-361. (Annotated scanned copy)
Arnold Saunders, A Class of Random Recursive Tree Algorithms with Deletion, arXiv:1906.02720 [math.PR], 2019.
V. Shevelev, Necklaces and convex k-gons, Indian J. Pure and Appl. Math., Vol. 35, No. 5 (2004), pp. 629-638.
V. Shevelev, A problem of enumeration of two-color bracelets with several variations, arXiv:0710.1370 [math.CO], May 05 2011.
N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
Emanuel Sperner, Ein Satz über Untermengen einer endlichen Menge, Mathematische Zeitschrift (in German), Vol. 27, No. 1 (1928), pp. 544-548.
P. K. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.
P. J. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974. [Scanned annotated and corrected copy]
I. Tasoulas, K. Manes, A. Sapounakis, and P. Tsikouras, Chains with Small Intervals in the Lattice of Binary Paths, arXiv:1911.10883 [math.CO], 2019.
Eric Weisstein's World of Mathematics, Central Binomial Coefficient.
Eric Weisstein's World of Mathematics, Quota System.
W. H. W. Wong and E. G. Tay, On Cross-intersecting Sperner Families, arXiv:2001.01910 [math.CO], 2020.
FORMULA
a(n) = max_{k=0..n} binomial(n, k).
a(2*n) = A000984(n), a(2*n+1) = A001700(n).
By symmetry, a(n) = binomial(n, ceiling(n/2)). - Labos Elemer, Mar 20 2003
P-recursive with recurrence: a(0) = 1, a(1) = 1, and for n >= 2, (n+1)*a(n) = 2*a(n-1) + 4*(n-1)*a(n-2). - Peter Bala, Feb 28 2011
G.f.: (1+x*c(x^2))/sqrt(1-4*x^2) = 1/(1 - x - x^2*c(x^2)); where c(x) = g.f. for Catalan numbers A000108.
G.f.: (-1 + 2*x + sqrt(1-4*x^2))/(2*x - 4*x^2). - Lee A. Newberg, Apr 26 2010
G.f.: 1/(1 - x - x^2/(1 - x^2/(1 - x^2/(1 - x^2/(1 - ... (continued fraction). - Paul Barry, Aug 12 2009
a(0) = 1; a(2*m+2) = 2*a(2*m+1); a(2*m+1) = Sum_{k = 0..2*m} (-1)^k*a(k)*a(2*m-k). - Len Smiley, Dec 09 2001
G.f.: (sqrt((1+2*x)/(1-2*x)) - 1)/(2*x). - Vladeta Jovovic, Apr 28 2003
The o.g.f. A(x) satisfies A(x) + x*A^2(x) = 1/(1-2*x). - Peter Bala, Feb 28 2011
E.g.f.: BesselI(0, 2*x) + BesselI(1, 2*x). - Vladeta Jovovic, Apr 28 2003
a(0) = 1; a(2*m+2) = 2*a(2*m+1); a(2*m+1) = 2*a(2*m) - c(m), where c(m)=A000108(m) are the Catalan numbers. - Christopher Hanusa (chanusa(AT)washington.edu), Nov 25 2003
a(n) = Sum_{k=0..n} (-1)^k*2^(n-k)*binomial(n, k)*A000108(k). - Paul Barry, Jan 27 2005
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(1, n-2*k). - Paul Barry, May 13 2005
From Paul Barry, Nov 02 2004: (Start)
a(n) = Sum_{k=0..floor((n+1)/2)} (binomial(n+1, k)*(cos((n-2*k+1)*Pi/2) + sin((n-2*k+1)*Pi/2))).
a(n) = Sum_{k=0..n+1}, (binomial(n+1, (n-k+1)/2)*(1-(-1)^(n-k))*(cos(k*Pi/2) + sin(k*Pi))/2). (End)
a(n) = Sum_{k=floor(n/2)..n} (binomial(n,n-k) - binomial(n,n-k-1)). - Paul Barry, Sep 06 2007
Inverse binomial transform of A005773 starting (1, 2, 5, 13, 35, 96, ...) and double inverse binomial transform of A001700. Row sums of triangle A132815. - Gary W. Adamson, Aug 31 2007
a(n) = Sum_{k=0..n} A120730(n,k). - Philippe Deléham, Oct 16 2008
a(n) = Sum_{k = 0..floor(n/2)} (binomial(n,k) - binomial(n,k-1)). - Nishant Doshi (doshinikki2004(AT)gmail.com), Apr 06 2009
Sum_{n>=0} a(n)/10^(n+1) = 0.1123724... = (sqrt(3)-sqrt(2))/(2*sqrt(2)); Sum_{n>=0} a(n)/100^(n+1) = 0.0101020306102035... = (sqrt(51)-sqrt(49))/(2*sqrt(49)). - Mark Dols, Jul 15 2010
Conjectured: a(n) = 2^n*2F1(1/2,-n;2;2), useful for number of paths in 1-d for which the coordinate is never negative. - Benjamin Phillabaum, Feb 20 2011
a(2*m+1) = (2*m+1)*a(2*m)/(m+1), e.g., a(7) = (7/4)*a(6) = (7/4)*20 = 35. - Jon Perry, Jan 20 2011
From Peter Bala, Feb 28 2011: (Start)
Let F(x) be the logarithmic derivative of the o.g.f. A(x). Then 1+x*F(x) is the o.g.f. for A027306.
Let G(x) be the logarithmic derivative of 1+x*A(x). Then x*G(x) is the o.g.f. for A058622. (End)
Let M = an infinite tridiagonal matrix with 1's in the super and subdiagonals and [1,0,0,0,...] in the main diagonal; and V = the vector [1,0,0,0,...]. a(n) = M^n*V, leftmost term. - Gary W. Adamson, Jun 13 2011
Let M = an infinite tridiagonal matrix with 1's in the super and subdiagonals and [1,0,0,0,...] in the main diagonal. a(n) = M^n_{1,1}. - Corrected by Gary W. Adamson, Jan 30 2012
a(n) = A007318(n, floor(n/2)). - Reinhard Zumkeller, Nov 09 2011
a(n+1) = Sum_{k=0..n} a(n-k)*A097331(k) = a(n) + Sum_{k=0..(n-1)/2} A000108(k)*a(n-2*k-1). - Philippe Deléham, Nov 27 2011
a(n) = A214282(n) - A214283(n), for n > 0. - Reinhard Zumkeller, Jul 14 2012
a(n) = Sum_{k=0..n} A168511(n,k)*(-1)^(n-k). - Philippe Deléham, Mar 19 2013
a(n+2*p-2) = Sum_{k=0..floor(n/2)} A009766(n-k+p-1, k+p-1) + binomial(n+2*p-2, p-2), for p >= 1. - Johannes W. Meijer, Aug 02 2013
O.g.f.: (1-x*c(x^2))/(1-2*x), with the o.g.f. c(x) of Catalan numbers A000108. See the rewritten formula given by Lee A. Newberg above. This is the o.g.f. for the row sums the Riordan triangle A053121. - Wolfdieter Lang, Sep 22 2013
a(n) ~ 2^n / sqrt(Pi * n/2). - Charles R Greathouse IV, Oct 23 2015
a(n) = 2^n*hypergeom([1/2,-n], [2], 2). - Vladimir Reshetnikov, Nov 02 2015
a(2*k) = Sum_{i=0..k} binomial(k, i)*binomial(k, i), a(2*k+1) = Sum_{i=0..k} binomial(k+1, i)*binomial(k, i). - Juan A. Olmos, Dec 21 2017
a(0) = 1, a(n) = 2 * a(n-1) for even n, a(n) = (2*n/(n+1)) * a(n-1) for odd n. - James East, Sep 25 2019
a(n) = A037952(n) + A000108(n/2) where A(.)=0 for non-integer argument. - R. J. Mathar, Sep 23 2021
From Amiram Eldar, Mar 10 2022: (Start)
Sum_{n>=0} 1/a(n) = 2*Pi/(3*sqrt(3)) + 2.
Sum_{n>=0} (-1)^n/a(n) = 2/3 - 2*Pi/(9*sqrt(3)). (End)
For k>2, Sum_{n>=0} a(n)/k^n = (sqrt((k+2)/(k-2)) - 1)*k/2. - Vaclav Kotesovec, May 13 2022
From Peter Bala, Mar 24 2023: (Start)
a(n) = Sum_{k = 0..n+1} (-1)^(k+binomial(n+2,2)) * k/(n+1) * binomial(n+1,k)^2.
(n + 1)*(2*n - 1)*a(n) = (-1)^(n+1)*2*a(n-1) + 4*(n - 1)*(2*n + 1)*a(n-2) with a(0) = a(1) = 1. (End)
EXAMPLE
For n = 4, the a(4) = 6 distinct strings of length 4, each of which is a prefix of a string of balanced parentheses, are ((((, (((), (()(, ()((, ()(), and (()). - Lee A. Newberg, Apr 26 2010
There are a(5)=10 symmetric balanced strings of 5 pairs of parentheses:
[ 1] ((((()))))
[ 2] (((()())))
[ 3] ((()()()))
[ 4] ((())(()))
[ 5] (()()()())
[ 6] (()(())())
[ 7] (())()(())
[ 8] ()()()()()
[ 9] ()((()))()
[10] ()(()())() - Joerg Arndt, Jul 25 2011
G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 35*x^7 + 70*x^8 + ...
The a(4)=6 binary 4-tuples such that the number of 1's in the even positions is the same as the number of 1's in the odd positions are 0000, 1100, 1001, 0110, 0011, 1111. - Juan A. Olmos, Dec 21 2017
MAPLE
A001405 := n->binomial(n, floor(n/2)): seq(A001405(n), n=0..33);
MATHEMATICA
Table[Binomial[n, Floor[n/2]], {n, 0, 40}] (* Stefan Steinerberger, Apr 08 2006 *)
Table[DifferenceRoot[Function[{a, n}, {-4 n a[n]-2 a[1+n]+(2+n) a[2+n] == 0, a[1] == 1, a[2] == 1}]][n], {n, 30}] (* Luciano Ancora, Jul 08 2015 *)
Array[Binomial[#, Floor[#/2]]&, 40, 0] (* Harvey P. Dale, Mar 05 2018 *)
PROG
(PARI) a(n) = binomial(n, n\2);
(PARI) first(n) = x='x+O('x^n); Vec((-1+2*x+sqrt(1-4*x^2))/(2*x-4*x^2)) \\ Iain Fox, Dec 20 2017 (edited by Iain Fox, May 07 2018)
(Haskell)
a001405 n = a007318_row n !! (n `div` 2) -- Reinhard Zumkeller, Nov 09 2011
(Maxima) A001405(n):=binomial(n, floor(n/2))$
makelist(A001405(n), n, 0, 30); /* Martin Ettl, Nov 01 2012 */
(Magma) [Binomial(n, Floor(n/2)): n in [0..40]]; // Vincenzo Librandi, Nov 16 2014
(GAP) List([0..40], n->Binomial(n, Int(n/2))); # Muniru A Asiru, Apr 08 2018
(Python)
from math import comb
def A001405(n): return comb(n, n//2) # Chai Wah Wu, Jun 07 2022
CROSSREFS
Row sums of Catalan triangle A053121 and of symmetric Dyck paths A088855.
Enumerates the structures encoded by A061854 and A061855.
First differences are in A037952.
Apparently a(n) = lim_{k->infinity} A094718(k, n).
Partial sums are in A036256. Column k=2 of A182172. Column k=1 of A335570.
Bisections give A000984 (even part), A001700 (odd part). - Nachum Dershowitz, Aug 12 2020
Cf. A000984 gives the odd-indexed terms of this sequence.
Cf. A097331.
Cf. A107373, A340567, A340568, A340569 (popularity of certain patterns in faro permutations). - Sergey Kirgizov, Jan 12 2021
KEYWORD
nonn,easy,nice,core,walk
STATUS
approved
Number of partial permutations of an n-set; number of n X n binary matrices with at most one 1 in each row and column.
(Formerly M1795 N0708)
+10
158
1, 2, 7, 34, 209, 1546, 13327, 130922, 1441729, 17572114, 234662231, 3405357682, 53334454417, 896324308634, 16083557845279, 306827170866106, 6199668952527617, 132240988644215842, 2968971263911288999, 69974827707903049154, 1727194482044146637521, 44552237162692939114282
OFFSET
0,2
COMMENTS
a(n) is also the total number of increasing subsequences of all permutations of [1..n] (see Lifschitz and Pittel). - N. J. A. Sloane, May 06 2012
a(n) = A000142 + A001563 + A001809 + A001810 + A001811 + A001812 + ... these sequences respectively give the number of increasing subsequences of length i for i=0,1,2,... in all permutations of [1..n]. - Geoffrey Critzer, Jan 17 2013
a(n) is also the number of matchings in the complete bipartite graph K(n,n). - Sharon Sela (sharonsela(AT)hotmail.com), May 19 2002
a(n) is also the number of 12-avoiding signed permutations in B_n (see Simion ref).
a(n) is also the order of the symmetric inverse semigroup (monoid) I_n. - A. Umar, Sep 09 2008
EXP transform of A001048(n) = n! + (n-1)!. - Franklin T. Adams-Watters, Dec 28 2006
From Peter Luschny, Mar 27 2011: (Start)
Let B_{n}(x) = Sum_{j>=0} exp(j!/(j-n)!*x-1)/j!; then a(n) = 2! [x^2] Taylor(B_{n}(x)), where [x^2] denotes the coefficient of x^2 in the Taylor series for B_{n}(x).
a(n) is column 2 of the square array representation of A090210. (End)
a(n) is the Hosoya index of the complete bipartite graph K_{n,n}. - Eric W. Weisstein, Jul 09 2011
a(n) is also number of non-attacking placements of k rooks on an n X n board, summed over all k >= 0. - Vaclav Kotesovec, Aug 28 2012
Also the number of vertex covers and independent vertex sets in the n X n rook graph. - Eric W. Weisstein, Jan 04 2013
a(n) is the number of injective functions from subsets of [n] to [n] where [n]={1,2,...,n}. For a subset D of size k, there are n!/(n-k)! injective functions from D to [n]. Summing over all subsets, we obtain a(n) = Sum_{k=0..n} C(n,k)*n!/(n-k)! = Sum_{k=0..n} k!*C(n,k)^2. - Dennis P. Walsh, Nov 16 2015
Also the number of cliques in the n X n rook complement graph. - Eric W. Weisstein, Sep 14 2017
a(n)/n! is the expected value of the n-th term of Ulam's "history-dependent random sequence". See Kac (1989), Eq.(2). - N. J. A. Sloane, Nov 16 2019
a(2*n) is odd and a(2*n+1) is even for all n. More generally, for each positive integer k, a(n+k) == a(n) (mod k) for all n. It follows that for each positive integer k, the sequence obtained by reducing a(n) modulo k is periodic, with period dividing k. Various divisibility properties of the sequence follow from this: for example, a(7*n+2) == 0 (mod 7), a(11*n+4) == 0 (mod 11), a(17*n+3) == 0 (mod 17) and a(19*n+4) == 0 (mod 19). - Peter Bala, Nov 07 2022
Conjecture: a(n)*k is the sum of the largest parts in all integer partitions containing their own first differences with n + 1 parts and least part k. - John Tyler Rascoe, Feb 28 2024
REFERENCES
J. M. Howie, Fundamentals of semigroup theory. Oxford: Clarendon Press, (1995). [From A. Umar, Sep 09 2008]
J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 78.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 356.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..443 (first 101 terms from T. D. Noe)
Francesca Aicardi, Diego Arcis, and Jesús Juyumaya, Ramified inverse and planar monoids, arXiv:2210.17461 [math.RT], 2022.
A. I. Aptekarev, On linear forms containing the Euler constant, arXiv:0902.1768 [math.NT], 2009.
T. Banica, The algebraic structure of quantum partial isometries, arXiv:1411.0577 [math.OA], 2014-2015.
C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy, and D. Gouyou-Beauchamps, Generating Functions for Generating Trees, Discrete Mathematics 246(1-3), March 2002, pp. 29-55.
Teo Banica, Algebraic invariants of truncated Fourier matrices, arXiv preprint arXiv:1401.5023 [math.QA], 2014.
D. Borwein, S. Rankin, and L. Renner, Enumeration of injective partial transformations, Discrete Math. (1989), 73: 291-296. [From A. Umar, Sep 09 2008]
D. Castellanos, A generalization of Binet's formula and some of its consequences, Fib. Quart., 27 (1989), 424-438.
Aria Chen, Tyler Cummins, Rishi De Francesco, Jate Greene, Tanya Khovanova, Alexander Meng, Tanish Parida, Anirudh Pulugurtha, Anand Swaroop, and Samuel Tsui, Card Tricks and Information, arXiv:2405.21007 [math.HO], 2024. See p. 14.
Fabio Deelan Cunden, Jakub Czartowski, Giovanni Gramegna, and A. de Oliveira Junior, Relative volume of comparable pairs under semigroup majorization, arXiv:2410.23196 [math-ph], 2024. See pp. 4, 15.
Dan Daly and Lara Pudwell, Pattern avoidance in rook monoids, Special Session on Patterns in Permutations and Words, Joint Mathematics Meetings, 2013. - From N. J. A. Sloane, Feb 03 2013
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 598.
J. Godbout, Combinatorial Properties of the Mirabolic RSK Algorithm, Thesis presented to The Faculty of the Graduate College of The University of Vermont, May 2013.
Mark Kac, A history-dependent random sequence defined by Ulam, Advances in Applied Mathematics 10.3 (1989): 270-277.
Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 219.
Vaclav Kotesovec, Too many errors around coefficient C1 in asymptotic of sequence A002720, Sep 28 2012. [The bug in program Mathematica was fixed in version 10.2.0.0 / July 2015. Vaclav Kotesovec, Jul 25 2015]
V. Lifschitz and P. Pittel, The number of increasing subsequences of the random permutation J. Combin. Theory Ser. A 31 (1981), no. 1, 1--20. MR0626437 (84e:05012)
Mathematica Stack Exchange, Wrong Limit with LaguerreL, May 22 2015
W. D. Munn, The characters of the symmetric inverse semigroup, Proc. Cambridge Philos. Soc. 53 (1957), 13-18. [From A. Umar, Sep 09 2008]
K. A. Penson, P. Blasiak, A. Horzela, G. H. E. Duchamp, and A. I. Solomon, Laguerre-type derivatives: Dobinski relations and combinatorial identities, J. Math. Phys. vol. 50, 083512 (2009).
Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
John Riordan, Letter, Apr 28 1976.
John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
J. Ser, Les Calculs Formels des Séries de Factorielles. (Annotated scans of some selected pages)
A. Umar, Some combinatorial problems in the theory of symmetric ..., Algebra Disc. Math. 9 (2010) 115-126.
Luis Verde-Star, A Matrix Approach to Generalized Delannoy and Schröder Arrays, J. Int. Seq., Vol. 24 (2021), Article 21.4.1.
Eric Weisstein's World of Mathematics, Clique.
Eric Weisstein's World of Mathematics, Complete Bipartite Graph.
Eric Weisstein's World of Mathematics, Independent Vertex Set.
Eric Weisstein's World of Mathematics, Matching.
Eric Weisstein's World of Mathematics, Rook Complement Graph.
Eric Weisstein's World of Mathematics, Rook Graph.
Eric Weisstein's World of Mathematics, Vertex Cover.
FORMULA
a(n) = Sum_{k=0..n} k!*C(n, k)^2.
E.g.f.: (1/(1-x))*exp(x/(1-x)). - Don Knuth, Jul 1995
D-finite with recurrence: a(n) = 2*n*a(n-1) - (n-1)^2*a(n-2).
a(n) = Sum_{k>=0} (k+n)! / ((k!)^2*exp(1)). - Robert G. Wilson v, May 02 2002 [corrected by Vaclav Kotesovec, Aug 28 2012]
a(n) = Sum_{m>=0} (-1)^m*A021009(n, m). - Philippe Deléham, Mar 10 2004
a(n) = Sum_{k=0..n} C(n, k)n!/k!. - Paul Barry, May 07 2004
a(n) = Sum_{k=0..n} P(n, k)*C(n, k); a(n) = Sum_{k=0..n} n!^2/(k!*(n-k)!^2). - Ross La Haye, Sep 20 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling1(n, k)*Bell(k+1). - Vladeta Jovovic, Mar 18 2005
Define b(n) by b(0) = 1, b(n) = b(n-1) + (1/n) * Sum_{k=0..n-1} b(k). Then b(n) = a(n)/n!. - Franklin T. Adams-Watters, Sep 05 2005
Asymptotically, a(n)/n! ~ (1/2)*Pi^(-1/2)*exp(-1/2 + 2*n^(1/2))/n^(1/4) and so a(n) ~ C*BesselI(0, 2*sqrt(n))*n! with C = exp(-1/2) = 0.6065306597126334236... - Alec Mihailovs, Sep 06 2005, establishing a conjecture of Franklin T. Adams-Watters
a(n) = (n!/e) * Sum_{k>=0} binomial(n+k,n)/k!. - Gottfried Helms, Nov 25 2006
Integral representation as n-th moment of a positive function on a positive halfaxis (solution of the Stieltjes moment problem), in Maple notation: a(n) = int(x^n*BesselI(0,2*sqrt(x))*exp(-x)/exp(1), x=0..infinity), n=0,1,... . - Karol A. Penson and G. H. E. Duchamp (gduchamp2(AT)free.fr), Jan 09 2007
a(n) = n! * LaguerreL[n, -1].
E.g.f.: exp(x) * Sum_{n>=0} x^n/n!^2 = Sum_{n>=0} a(n)*x^n/n!^2. - Paul D. Hanna, Nov 18 2011
From Peter Bala, Oct 11 2012: (Start)
Denominators in the sequence of convergents coming from Stieltjes's continued fraction for A073003, the Euler-Gompertz constant G := Integral_{x = 0..oo} 1/(1+x)*exp(-x) dx:
G = 1/(2 - 1^2/(4 - 2^2/(6 - 3^2/(8 - ...)))). See [Wall, Chapter 18, (92.7) with a = 1]. The sequence of convergents to the continued fraction begins [1/2, 4/7, 20/34, 124/209, ...]. The numerators are in A002793. (End)
G.f.: 1 = Sum_{n>=0} a(n) * x^n * (1 - (n+1)*x)^2. - Paul D. Hanna, Nov 27 2012
E.g.f.: exp(x/(1-x))/(1-x) = G(0)/(1-x) where G(k) = 1 + x/((2*k+1)*(1-x) - x*(1-x)*(2*k+1)/(x + (1-x)*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 28 2012
a(n) = Sum_{k=0..n} L(n,k)*(k+1); L(n,k) the unsigned Lah numbers. - Peter Luschny, Oct 18 2014
a(n) = n! * A160617(n)/A160618(n). - Alois P. Heinz, Jun 28 2017
0 = a(n)*(-24*a(n+2) +99*a(n+3) -78*a(n+4) +17*a(n+5) -a(n+6)) +a(n+1)*(-15*a(n+2) +84*a(n+3) -51*a(n+4) +6*a(n+5)) +a(n+2)*(-6*a(n+2) +34*a(n+3) -15*a(n+4)) +a(n+3)*(+10*a(n+3)) for all n>=0. - Michael Somos, Jul 31 2018
a(n) = Sum_{k=0..n} C(n,k)*k!*A000262(n-k). - Geoffrey Critzer, Jan 07 2023
a(n) = A000262(n+1) - n * A000262(n). - Werner Schulte, Mar 29 2024
EXAMPLE
G.f. = 1 + 2*x + 7*x^2 + 34*x^3 + 209*x^4 + 1546*x^5 + 13327*x^6 + 130922*x^7 + ... - Michael Somos, Jul 31 2018
MAPLE
A002720 := proc(n) exp(-x)*n!*hypergeom([n+1], [1], x); simplify(subs(x=1, %)) end: seq(A002720(n), n=0..25); # Peter Luschny, Mar 30 2011
A002720 := proc(n)
option remember;
if n <= 1 then
n+1 ;
else
2*n*procname(n-1)-(n-1)^2*procname(n-2) ;
end if;
end proc: # R. J. Mathar, Mar 09 2017
MATHEMATICA
Table[n! LaguerreL[n, -1], {n, 0, 25}]
Table[(-1)^n*HypergeometricU[-n, 1, -1], {n, 0, 25}] (* Jean-François Alcover, Jul 15 2015 *)
RecurrenceTable[{(n+1)^2 a[n] - 2(n+2) a[n+1] + a[n+2]==0, a[1]==2, a[2]==7}, a, {n, 25}] (* Eric W. Weisstein, Sep 27 2017 *)
PROG
(PARI) a(n) = sum(k=0, n, k!*binomial(n, k)^2 );
(PARI) a(n) = suminf ( k=0, binomial(n+k, n)/k! ) / ( exp(1)/n! ) /* Gottfried Helms, Nov 25 2006 */
(PARI) {a(n)=n!^2*polcoeff(exp(x+x*O(x^n))*sum(m=0, n, x^m/m!^2), n)} /* Paul D. Hanna, Nov 18 2011 */
(PARI) {a(n)=if(n==0, 1, polcoeff(1-sum(m=0, n-1, a(m)*x^m*(1-(m+1)*x+x*O(x^n))^2), n))} /* Paul D. Hanna, Nov 27 2012 */
(PARI) my(x='x+O('x^22)); Vec(serlaplace((1/(1-x))*exp(x/(1-x)))) \\ Joerg Arndt, Aug 11 2022
(Magma) [Factorial(n)*Evaluate(LaguerrePolynomial(n), -1): n in [0..25]]; // G. C. Greubel, Aug 11 2022
(SageMath) [factorial(n)*laguerre(n, -1) for n in (0..25)] # G. C. Greubel, Aug 11 2022
(Python)
from math import factorial, comb
def A002720(n): return sum(factorial(k)*comb(n, k)**2 for k in range(n+1)) # Chai Wah Wu, Aug 31 2023
CROSSREFS
Main diagonal of A088699. Column of A283500. Row sums of A144084.
Column k=1 of A289192.
Cf. A364673.
KEYWORD
nonn,easy,nice
EXTENSIONS
2nd description from R. H. Hardin, Nov 1997
3rd description from Wouter Meeussen, Jun 01 1998
STATUS
approved

Search completed in 0.112 seconds