[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a000712 -id:a000712
     Sort: relevance | references | number | modified | created      Format: long | short | data
b(n, 2) where b(n, m) is defined by expansion of ((Product_{k>=1} (1 - x^(prime(n)*k))/(1 - x^k)^prime(n)) - 1)/prime(n) in powers of x.
+10
0
2, 3, 4, 5, 7, 8, 10, 11, 13, 16, 17, 20, 22, 23, 25, 28, 31, 32, 35, 37, 38, 41, 43, 46, 50, 52, 53, 55, 56, 58, 65, 67, 70, 71, 76, 77, 80, 83, 85, 88, 91, 92, 97, 98, 100, 101, 107, 113, 115, 116, 118, 121, 122, 127, 130, 133, 136, 137, 140, 142, 143, 148, 155, 157
OFFSET
1,1
COMMENTS
c(n, m) is defined by expansion of (Product_{k>=1} 1/(1 - x^k)^prime(n))/prime(n) in powers of x.
b(n, 2) = c(n, 2) for n > 1.
FORMULA
a(n) = A098090(n - 1) = (prime(n) + 3)/2 for n > 1.
EXAMPLE
a(1) = b(1, 2) = A014968(2) = 2.
a(2) = b(2, 2) = A277968(2) = c(2, 2) = A000716(2)/3 = 3.
a(3) = b(3, 2) = A277974(2) = c(3, 2) = A023004(2)/5 = 4.
a(4) = b(4, 2) = A160549(2) = c(4, 2) = A023006(2)/7 = 5.
a(5) = b(5, 2) = A277912(2) = c(5, 2) = A023010(2)/11 = 7.
CROSSREFS
Expansion of Product_{k>=1} 1/(1 - x^k)^prime(n): A000712 (n=1), A000716 (n=2), A023004 (n=3), A023006 (n=4), A023010 (n=5).
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 07 2016
STATUS
approved
Irregular triangle read by rows: T(n,k) = number of 1324-avoiding permutations of length n >= 0 having k >= 0 inversions.
+10
0
1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 5, 6, 5, 3, 1, 1, 2, 5, 10, 16, 20, 20, 15, 9, 4, 1, 1, 2, 5, 10, 20, 32, 51, 67, 79, 80, 68, 49, 29, 14, 5, 1, 1, 2, 5, 10, 20, 36, 61, 96, 148, 208, 268, 321, 351, 347, 308, 241, 165, 98, 49, 20, 6, 1, 1, 2, 5, 10, 20, 36, 65, 106, 171, 262, 397, 568, 784, 1019, 1264, 1478, 1628, 1681, 1619, 1441, 1173, 866, 574, 338, 174, 76, 27, 7, 1
OFFSET
0,6
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 769, Fig. 12.13.
EXAMPLE
Triangle begins:
1;
1;
1, 1;
1, 2, 2, 1;
1, 2, 5, 6, 5, 3, 1;
1, 2, 5, 10, 16, 20, 20, 15, 9, 4, 1;
1, 2, 5, 10, 20, 32, 51, 67, 79, 80, 68, 49, 29, 14, 5, 1;
...
CROSSREFS
The rows appear to be converging to A000712.
Row sums are A061552.
Cf. A188919.
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Dec 25 2018
EXTENSIONS
More terms from Alois P. Heinz, Dec 27 2018
STATUS
approved
Number of ordered pairs (a,g) with a in IS_n the symmetric inverse semigroup on [n] and g in symmetric group on [n] such that ag=ga.
+10
0
1, 2, 10, 60, 480, 4320, 46800, 554400, 7459200, 108864000, 1745452800, 30017433600, 558036864000, 11021826816000, 232330146048000, 5173159799808000, 121812482727936000, 3012672515973120000, 78301030421053440000, 2127572806150471680000, 60438151687124090880000
OFFSET
0,2
FORMULA
a(n) = A000712(n)*n!
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, 2*(n-1)!*
add(a(j)/j!*numtheory[sigma](n-j), j=0..n-1))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Dec 20 2021
MATHEMATICA
nn = 16; Table[Sum[PartitionsP[k] PartitionsP[n - k], {k, 0, n}], {n, 0, nn}] Table[n!, {n, 0, nn}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Dec 20 2021
STATUS
approved
Table read by antidiagonals: row n gives the Euler transform of the sequence (2,...,2,0,0,...) that contains n 2s followed by 0s.
+10
0
1, 1, 2, 1, 2, 3, 1, 2, 5, 4, 1, 2, 5, 8, 5, 1, 2, 5, 10, 14, 6, 1, 2, 5, 10, 18, 20, 7, 1, 2, 5, 10, 20, 30, 30, 8, 1, 2, 5, 10, 20, 34, 49, 40, 9, 1, 2, 5, 10, 20, 36, 59, 74, 55, 10, 1, 2, 5, 10, 20, 36, 63, 94, 110, 70, 11, 1, 2, 5, 10, 20, 36, 65, 104, 149, 158, 91, 12
OFFSET
1,3
EXAMPLE
Table begins:
| 0 1 2 3 4 5 6 7 8 9 10
--+----------------------------------
1 | 1 2 3 4 5 6 7 8 9 10 11
2 | 1 2 5 8 14 20 30 40 55 70 91
3 | 1 2 5 10 18 30 49 74 110 158 221
4 | 1 2 5 10 20 34 59 94 149 224 334
5 | 1 2 5 10 20 36 63 104 169 264 405
6 | 1 2 5 10 20 36 65 108 179 284 445
7 | 1 2 5 10 20 36 65 110 183 294 465
8 | 1 2 5 10 20 36 65 110 185 298 475
9 | 1 2 5 10 20 36 65 110 185 300 479
MATHEMATICA
Seed[i_, n_] := ConstantArray[2, i]~Join~ConstantArray[0, n - i];
A364842Table[n_] := Table[Seed[i, n] // EulerTransform, {i, 1, n}]
(*EulerTransform is defined in A005195*)
CROSSREFS
Cf. A000027 (row 1), A006918 (row 2), A117485 (row 3), A117486 ( row 4), A117487 (row 5), A160647 (row 6), A000712 (main diagonal).
Analogous for initial 1s sequence A008284.
Cf. A115994.
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Nov 09 2023
STATUS
approved

Search completed in 0.103 seconds