[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A115994
Triangle read by rows: T(n,k) is number of partitions of n with Durfee square of size k (n>=1; 1<=k<=floor(sqrt(n))).
83
1, 2, 3, 4, 1, 5, 2, 6, 5, 7, 8, 8, 14, 9, 20, 1, 10, 30, 2, 11, 40, 5, 12, 55, 10, 13, 70, 18, 14, 91, 30, 15, 112, 49, 16, 140, 74, 1, 17, 168, 110, 2, 18, 204, 158, 5, 19, 240, 221, 10, 20, 285, 302, 20, 21, 330, 407, 34, 22, 385, 536, 59, 23, 440, 698, 94, 24, 506, 896, 149, 25
OFFSET
1,2
COMMENTS
Row n has floor(sqrt(n)) terms. Row sums yield A000041. Column 2 yields A006918. sum(k*T(n,k),k=1..floor(sqrt(n)))=A115995.
T(n,k) is number of partitions of n-k^2 into parts of 2 kinds with at most k of each kind.
The limit of the diagonals is A000712 (partitions into parts of two kinds). In particular, if 0<=m<=n, T(n(n+1)/2 + m, n) = A000712(m). These partitions in this range can be viewed as an equilateral right triangle of side n, with one partition appended on the top (at the left) and another appended on the right. - Franklin T. Adams-Watters, Jan 11 2006
Successive columns approach closer and closer to A000712. - N. J. A. Sloane, Mar 10 2007
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).
LINKS
E. R. Canfield, From recursions to asymptotics: Durfee and dilogarithmic deductions, Advances in Applied Mathematics, Volume 34, Issue 4, May 2005, Pages 768-797
E. R. Canfield, S. Corteel, C. D. Savage, Durfee Polynomials, Electronic Journal of Combinatorics 5 (1998), #R32.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009, page 45
Eric Weisstein's World of Mathematics, Durfee Square.
FORMULA
G.f.: sum(k>=1, t^k*q^(k^2)/product(j=1..k, (1-q^j)^2 ) ).
T(n,k) = Sum_{i=0}^{n-k^2} P*(i,k)*P*(n-k^2-i), where P*(n,k) = P(n+k,k) is the number of partitions of n objects into at most k parts.
EXAMPLE
T(5,2) = 2 because the only partitions of 5 having Durfee square of size 2 are [3,2] and [2,2,1]; the other five partitions ([5], [4,1], [3,1,1], [2,1,1,1] and [1,1,1,1,1]) have Durfee square of size 1.
Triangle starts:
1;
2;
3;
4, 1;
5, 2;
6, 5;
7, 8;
8, 14;
9, 20, 1;
...
MAPLE
g:=sum(t^k*q^(k^2)/product((1-q^j)^2, j=1..k), k=1..40): gser:=series(g, q=0, 32): for n from 1 to 27 do P[n]:=coeff(gser, q^n) od: for n from 1 to 27 do seq(coeff(P[n], t^j), j=1..floor(sqrt(n))) od; # yields sequence in triangular form
# second Maple program:
b:= proc(n, i) option remember;
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
end:
T:= (n, k)-> add(b(m, k)*b(n-k^2-m, k), m=0..n-k^2):
seq(seq(T(n, k), k=1..floor(sqrt(n))), n=1..30); # Alois P. Heinz, Apr 09 2012
MATHEMATICA
Map[Select[#, #>0&]&, Drop[Transpose[Table[CoefficientList[ Series[x^(n^2)/Product[1-x^i, {i, 1, n}]^2, {x, 0, nn}], x], {n, 1, 10}]], 1]] //Grid (* Geoffrey Critzer, Sep 27 2013 *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; T[n_, k_] := Sum[b[m, k]*b[n-k^2-m, k], {m, 0, n-k^2}]; Table[T[n, k], {n, 1, 30}, {k, 1, Sqrt[n]}] // Flatten (* Jean-François Alcover, Dec 25 2015, after Alois P. Heinz *)
CROSSREFS
For another version see A115720. Row lengths A000196.
Sequence in context: A179547 A023133 A026280 * A276951 A071437 A243713
KEYWORD
nonn,look,tabf
AUTHOR
Emeric Deutsch, Feb 11 2006
EXTENSIONS
Edited and verified by Franklin T. Adams-Watters, Mar 11 2006
STATUS
approved