[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a007117 -id:a007117
     Sort: relevance | references | number | modified | created      Format: long | short | data
Only k >= 0 such that, for every odd r > 0, A093179(n) divides the generalized Fermat number (A007117(n)^r)^(2^k) + 1.
+20
0
3, 3, 5, 3, 7, 7, 9, 8, 11, 11, 13, 10, 15, 15, 17, 16, 19, 19, 21, 19, 23, 23, 25, 24, 27, 27, 29, 25, 31, 31, 33, 32, 35, 35, 37, 35, 39, 39, 41, 40, 43, 43, 45, 42, 47, 47, 49, 48, 51, 51, 53, 51, 55, 55, 57, 56, 59, 59, 61, 56, 63, 63, 65, 64, 67, 67, 69, 67, 71, 71, 73, 72, 75, 75, 77, 74, 79
OFFSET
3,1
LINKS
Lorenzo Sauras-Altuzarra, Some properties of the factors of Fermat numbers, Art Discrete Appl. Math. (2022).
FORMULA
a(n) = n - A007814(n + 2) (due to Jinyuan Wang).
EXAMPLE
A093179(5) = 641, A007117(5) = 5 and the only k >= 0 such that, for every odd r > 0, 641 divides the generalized Fermat number (5^r)^(2^k) + 1 is 5; so a(5) = 5.
MAPLE
a:=n->n-padic:-ordp(n+2, 2):
seq(a(n), n=3..79);
PROG
(PARI) a(n) = n - valuation(n+2, 2);
vector(77, n, a(n+2)) \\ Joerg Arndt, Mar 03 2023
CROSSREFS
Cf. A000215 (Fermat numbers), A007117, A007814 (dyadic valuation), A093179, A307843 (divisors of Fermat numbers).
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
Sierpiński's triangle (Pascal's triangle mod 2) converted to decimal.
(Formerly M2495 N0988)
+10
98
1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535, 65537, 196611, 327685, 983055, 1114129, 3342387, 5570645, 16711935, 16843009, 50529027, 84215045, 252645135, 286331153, 858993459, 1431655765, 4294967295, 4294967297, 12884901891, 21474836485, 64424509455, 73014444049, 219043332147, 365072220245, 1095216660735, 1103806595329, 3311419785987
OFFSET
0,2
COMMENTS
The members are all palindromic in binary, i.e., a subset of A006995. - Ralf Stephan, Sep 28 2004
J. H. Conway writes (in Math Forum): at least the first 31 numbers give odd-sided constructible polygons. See also A047999. - M. Dauchez (mdzzdm(AT)yahoo.fr), Sep 19 2005 [This observation was also made in 1982 by N. L. White (see letter). - N. J. A. Sloane, Jun 15 2015]
Decimal number generated by the binary bits of the n-th generation of the Rule 60 elementary cellular automaton. Thus: 1; 0, 1, 1; 0, 0, 1, 0, 1; 0, 0, 0, 1, 1, 1, 1; 0, 0, 0, 0, 1, 0, 0, 0, 1; ... . - Eric W. Weisstein, Apr 08 2006
Limit_{n->oo} log(a(n))/n = log(2). - Bret Mulvey, May 17 2008
Equals row sums of triangle A166548; e.g., 17 = (2 + 4 + 6 + 4 + 1). - Gary W. Adamson, Oct 16 2009
Equals row sums of triangle A166555. - Gary W. Adamson, Oct 17 2009
For n >= 1, all terms are in A001969. - Vladimir Shevelev, Oct 25 2010
Let n,m >= 0 be such that no carries occur when adding them. Then a(n+m) = a(n)*a(m). - Vladimir Shevelev, Nov 28 2010
Let phi_a(n) be the number of a(k) <= a(n) and respectively prime to a(n) (i.e., totient function over {a(n)}). Then, for n >= 1, phi_a(n) = 2^v(n), where v(n) is the number of 0's in the binary representation of n. - Vladimir Shevelev, Nov 29 2010
Trisection of this sequence gives rows of A008287 mod 2 converted to decimal. See also A177897, A177960. - Vladimir Shevelev, Jan 02 2011
Converting the rows of the powers of the k-nomial (k = 2^e where e >= 1) term-wise to binary and reading the concatenation as binary number gives every (k-1)st term of this sequence. Similarly with powers p^k of any prime. It might be interesting to study how this fails for powers of composites. - Joerg Arndt, Jan 07 2011
This sequence appears in Pascal's triangle mod 2 in another way, too. If we write it as
1111111...
10101010...
11001100...
10001000...
we get (taking the period part in each row):
.(1) (base 2) = 1
.(10) = 2/3
.(1100) = 12/15 = 4/5
.(1000) = 8/15
The k-th row, treated as a binary fraction, seems to be equal to 2^k / a(k). - Katarzyna Matylla, Mar 12 2011
From Daniel Forgues, Jun 16-18 2011: (Start)
Since there are 5 known Fermat primes, there are 32 products of distinct Fermat primes (thus there are 31 constructible odd-sided polygons, since a polygon has at least 3 sides). a(0)=1 (empty product) and a(1) to a(31) are those 31 non-products of distinct Fermat primes.
It can be proved by induction that all terms of this sequence are products of distinct Fermat numbers (A000215):
a(0)=1 (empty product) are products of distinct Fermat numbers in { };
a(2^n+k) = a(k) * (2^(2^n)+1) = a(k) * F_n, n >= 0, 0 <= k <= 2^n - 1.
Thus for n >= 1, 0 <= k <= 2^n - 1, and
a(k) = Product_{i=0..n-1} F_i^(alpha_i), alpha_i in {0, 1},
this implies
a(2^n+k) = Product_{i=0..n-1} F_i^(alpha_i) * F_n, alpha_i in {0, 1}.
(Cf. OEIS Wiki links below.) (End)
The bits in the binary expansion of a(n) give the coefficients of the n-th power of polynomial (X+1) in ring GF(2)[X]. E.g., 3 ("11" in binary) stands for (X+1)^1, 5 ("101" in binary) stands for (X+1)^2 = (X^2 + 1), and so on. - Antti Karttunen, Feb 10 2016
REFERENCES
Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences, Cambridge University Press, 2003, p. 113.
Henry Wadsworth Gould, Exponential Binomial Coefficient Series, Tech. Rep. 4, Math. Dept., West Virginia Univ., Morgantown, WV, Sept. 1961.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Amiram Eldar, Table of n, a(n) for n = 0..3321 (terms 0..300 from T. D. Noe, terms 301..1023 from Tilman Piesk)
Gary W. Adamson and N. J. A. Sloane, Correspondence, May 1994, including Adamson's MSS "Algorithm for Generating nth Row of Pascal's Triangle, mod 2, from n", and "The Tower of Hanoi Wheel".
Cristian Cobeli and Alexandru Zaharescu, Promenade around Pascal Triangle-Number Motives, Bull. Math. Soc. Sci. Math. Roumanie, Tome 56(104), No. 1 (2013), pp. 73-98; alternative link.
Richard K. Guy, The Second Strong Law of Small Numbers, Math. Mag, Vol. 63, No. 1 (1990), pp. 3-20. [Annotated scanned copy]
Richard K. Guy and N. J. A. Sloane, Correspondence, 1988.
Denton Hewgill, A relationship between Pascal's triangle and Fermat numbers, Fib. Quart., Vol. 15, No. 2 (1977), pp. 183-184.
P. Mathonet, M. Rigo, M. Stipulanti and N. Zénaïdi, On digital sequences associated with Pascal's triangle, arXiv:2201.06636 [math.NT], 2022.
Vladimir Shevelev, On Stephan's conjectures concerning Pascal triangle modulo 2, J. Alg. Number Theory, Vol. 7, No. 1 (2012) pp. 11-29, preprint, arXiv:1011.6083 [math.NT], 2010-2012.
John Frederick Sweeney, Clifford Clock and the Moolakaprithi Cube, 2014. See p. 26. - N. J. A. Sloane, Mar 20 2014
Eric Weisstein's World of Mathematics, Rule 60 and Rule 102.
FORMULA
a(n+1) = a(n) XOR 2*a(n), where XOR is binary exclusive OR operator. - Paul D. Hanna, Apr 27 2003
a(n) = Product_{e(j, n) = 1} (2^(2^j) + 1), where e(j, n) is the j-th least significant digit in the binary representation of n (Roberts: see Allouche & Shallit). - Benoit Cloitre, Jun 08 2004
a(2*n+1) = 3*a(2*n). Proof: Since a(n) = Product_{k in K} (1 + 2^(2^k)), where K is the set of integers such that n = Sum_{k in K} 2^k, clearly K(2*n+1) = K(2*n) union {0}, hence a(2*n+1) = (1+2^(2^0))*a(2*n) = 3*a(2*n). - Emmanuel Ferrand and Ralf Stephan, Sep 28 2004
a(32*n) = 3 ^ (32 * n * log(2) / log(3)) + 1. - Bret Mulvey, May 17 2008
For n >= 1, A000120(a(n)) = 2^A000120(n). - Vladimir Shevelev, Oct 25 2010
a(2^n) = A000215(n); a(2^n-1) = a(2^n)-2; for n >= 1, m >= 0,
a(2^(n-1)-1)*a(2^n*m + 2^(n-1)) = 3*a(2^(n-1))*a(2^n*m + 2^(n-1)-2). - Vladimir Shevelev, Nov 28 2010
Sum_{k>=0} 1/a(k) = Product_{n>=0} (1 + 1/F_n), where F_n=A000215(n);
Sum_{k>=0} (-1)^(m(k))/a(k) = 1/2, where {m(n)} is Thue-Morse sequence (A010060).
If F_n is defined by F_n(z) = z^(2^n) + 1 and a(n) by (1/2)*Sum_{i>=0}(1-(-1)^{binomial(n,i)})*z^i, then, for z > 1, the latter two identities hold as well with the replacement 1/2 in the right hand side of the 2nd one by 1-1/z. - Vladimir Shevelev, Nov 29 2010
G.f.: Product_{k>=0} ( 1 + z^(2^k) + (2*z)^(2^k) ). - conjectured by Shamil Shakirov, proved by Vladimir Shevelev
a(n) = A000225(n+1) - A219843(n). - Reinhard Zumkeller, Nov 30 2012
From Antti Karttunen, Feb 10 2016: (Start)
a(0) = 1, and for n > 1, a(n) = A048720(3, a(n-1)) = A048724(a(n-1)).
a(n) = A048723(3,n).
a(n) = A193231(A000079(n)).
For all n >= 0: A268389(a(n)) = n.
(End)
EXAMPLE
Given a(5)=51, a(6)=85 since a(5) XOR 2*a(5) = 51 XOR 102 = 85.
From Daniel Forgues, Jun 18 2011: (Start)
a(0) = 1 (empty product);
a(1) = 3 = 1 * F_0 = a(2^0+0) = a(0) * F_0;
a(2) = 5 = 1 * F_1 = a(2^1+0) = a(0) * F_1;
a(3) = 15 = 3 * 5 = F_0 * F_1 = a(2^1+1) = a(1) * F_1;
a(4) = 17 = 1 * F_2 = a(2^2+0) = a(0) * F_2;
a(5) = 51 = 3 * 17 = F_0 * F_2 = a(2^2+1) = a(1) * F_2;
a(6) = 85 = 5 * 17 = F_1 * F_2 = a(2^2+2) = a(2) * F_2;
a(7) = 255 = 3 * 5 * 17 = F_0 * F_1 * F_2 = a(2^2+3) = a(3) * F_2;
... (End)
MAPLE
A001317 := proc(n) local k; add((binomial(n, k) mod 2)*2^k, k=0..n); end;
MATHEMATICA
a[n_] := Nest[ BitXor[#, BitShiftLeft[#, 1]] &, 1, n]; Array[a, 42, 0] (* Joel Madigan (dochoncho(AT)gmail.com), Dec 03 2007 *)
NestList[BitXor[#, 2#]&, 1, 50] (* Harvey P. Dale, Aug 02 2021 *)
PROG
(PARI) a(n)=sum(i=0, n, (binomial(n, i)%2)*2^i)
(PARI) a=1; for(n=0, 66, print1(a, ", "); a=bitxor(a, a<<1) ); \\ Joerg Arndt, Mar 27 2013
(PARI) A001317(n, a=1)={for(k=1, n, a=bitxor(a, a<<1)); a} \\ M. F. Hasler, Jun 06 2016
(PARI) a(n) = subst(lift(Mod(1+'x, 2)^n), 'x, 2); \\ Gheorghe Coserea, Nov 09 2017
(Haskell)
a001317 = foldr (\u v-> 2*v + u) 0 . map toInteger . a047999_row
-- Reinhard Zumkeller, Nov 24 2012
(Scheme, with memoization-macro definec, two variants)
(definec (A001317 n) (if (zero? n) 1 (A048724 (A001317 (- n 1)))))
(definec (A001317 n) (if (zero? n) 1 (A048720bi 3 (A001317 (- n 1))))) ;; Where A048720bi implements the dyadic function given in A048720.
;; Antti Karttunen, Feb 10 2016
(Magma) [&+[(Binomial(n, i) mod 2)*2^i: i in [0..n]]: n in [0..41]]; // Vincenzo Librandi, Feb 12 2016
(Python)
from sympy import binomial
def a(n): return sum([(binomial(n, i)%2)*2**i for i in range(n + 1)]) # Indranil Ghosh, Apr 11 2017
(Python)
def A001317(n): return int(''.join(str(int(not(~n&k))) for k in range(n+1)), 2) # Chai Wah Wu, Feb 04 2022
CROSSREFS
Cf. A038183 (odd bisection, 1D Cellular Automata Rule 90).
Iterates of A048724 (starting from 1).
Row 3 of A048723.
Positions of records in A268389.
Positions of ones in A268669 and A268384 (characteristic function).
Not the same as A045544 nor as A053576.
Cf. A045544.
KEYWORD
nonn,base,easy,nice,hear,changed
STATUS
approved
Numbers of edges of regular polygons constructible with ruler (or, more precisely, an unmarked straightedge) and compass.
(Formerly M0505)
+10
42
1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96, 102, 120, 128, 136, 160, 170, 192, 204, 240, 255, 256, 257, 272, 320, 340, 384, 408, 480, 510, 512, 514, 544, 640, 680, 768, 771, 816, 960, 1020, 1024, 1028, 1088, 1280, 1285
OFFSET
1,2
COMMENTS
The terms 1 and 2 correspond to degenerate polygons.
These are also the numbers for which phi(n) is a power of 2: A209229(A000010(a(n))) = 1. - Olivier Gérard Feb 15 1999
From Stanislav Sykora, May 02 2016: (Start)
The sequence can be also defined as follows: (i) 1 is a member. (ii) Double of any member is also a member. (iii) If a member is not divisible by a Fermat prime F_k then its product with F_k is also a member. In particular, the powers of 2 (A000079) are a subset and so are the Fermat primes (A019434), which are the only odd prime members.
The definition is too restrictive (though correct): The Georg Mohr - Lorenzo Mascheroni theorem shows that constructibility using a straightedge and a compass is equivalent to using compass only. Moreover, Jean Victor Poncelet has shown that it is also equivalent to using straightedge and a fixed ('rusty') compass. With the work of Jakob Steiner, this became part of the Poncelet-Steiner theorem establishing the equivalence to using straightedge and a fixed circle (with a known center). A further extension by Francesco Severi replaced the availability of a circle with that of a fixed arc, no matter how small (but still with a known center).
Constructibility implies that when m is a member of this sequence, the edge length 2*sin(Pi/m) of an m-gon with circumradius 1 can be written as a finite expression involving only integer numbers, the four basic arithmetic operations, and the square root. (End)
If x,y are terms, and gcd(x,y) is a power of 2 then x*y is also a term. - David James Sycamore, Aug 24 2024
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 183.
Allan Clark, Elements of Abstract Algebra, Chapter 4, Galois Theory, Dover Publications, NY 1984, page 124.
Duane W. DeTemple, "Carlyle circles and the Lemoine simplicity of polygon constructions." The American Mathematical Monthly 98.2 (1991): 97-108. - N. J. A. Sloane, Aug 05 2021
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
B. L. van der Waerden, Modern Algebra. Unger, NY, 2nd ed., Vols. 1-2, 1953, Vol. 1, p. 187.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10136 (terms below 10^100; terms 1..2000 from T. D. Noe)
Laura Anderson, Jasbir S. Chahal and Jaap Top, The last chapter of the Disquisitiones of Gauss, arXiv:2110.01355 [math.HO], 2021.
Wayne Bishop, How to construct a regular polygon, Amer. Math. Monthly 85(3) (1978), 186-188.
Alessandro Chiodo, A note on the construction of the Śrī Yantra, Sorbonne Université (Paris, France, 2020).
T. Chomette, Construction des polygones réguliers (in French).
Duane W. DeTemple, Carlyle circles and the Lemoine simplicity of polygon constructions, Amer. Math. Monthly 98(2) (1991), 97-108.
David Eisenbud and Brady Haran, Heptadecagon and Fermat Primes (the math bit), Numberphile video (2015).
Mauro Fiorentini, Construibili (numeri).
C. F. Gauss, Disquisitiones Arithmeticae, 1801. English translation: Yale University Press, New Haven, CT, 1966, p. 463. Original (in Latin).
Richard K. Guy, The Second Strong Law of Small Numbers, Math. Mag. 63(1) (1990), 3-20. [Annotated scanned copy] [DOI]
Richard K. Guy and N. J. A. Sloane, Correspondence, 1988.
Johann Gustav Hermes, Über die Teilung des Kreises in 65537 gleiche Teile (About the division of the circle into 65537 equal pieces), Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, Vol. 3 (1894), 170-186.
Eric Weisstein's World of Mathematics, Constructible Number.
Eric Weisstein's World of Mathematics, Constructible Polygon.
Eric Weisstein's World of Mathematics, Regular Polygon.
Eric Weisstein's World of Mathematics, Trigonometry.
Eric Weisstein's World of Mathematics, Trigonometry Angles.
Wikipedia, Pierre Wantzel.
FORMULA
Terms from 3 onward are computable as numbers such that cototient-of-totient equals the totient-of-totient: Flatten[Position[Table[co[eu[n]]-eu[eu[n]], {n, 1, 10000}], 0]] eu[m]=EulerPhi[m], co[m]=m-eu[m]. - Labos Elemer, Oct 19 2001, clarified by Antti Karttunen, Nov 27 2017
Any product of 2^k and distinct Fermat primes (primes of the form 2^(2^m)+1). - Sergio Pimentel, Apr 30 2004, edited by Franklin T. Adams-Watters, Jun 16 2006
If the well-known conjecture that there are only five prime Fermat numbers F_k=2^{2^k}+1, k=0,1,2,3,4 is true, then we have exactly: Sum_{n>=1} 1/a(n)= 2*Product_{k=0..4} (1+1/F_k) = 4869735552/1431655765 = 3.40147098978.... - Vladimir Shevelev and T. D. Noe, Dec 01 2010
log a(n) >> sqrt(n); if there are finitely many Fermat primes, then log a(n) ~ k log n for some k. - Charles R Greathouse IV, Oct 23 2015
EXAMPLE
34 is a term of this sequence because a circle can be divided into exactly 34 parts. 7 is not.
MATHEMATICA
Select[ Range[ 1300 ], IntegerQ[ Log[ 2, EulerPhi[ # ] ] ]& ] (* Olivier Gérard Feb 15 1999 *)
(* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) Take[ Union[ Flatten[ NestList[2# &, Times @@@ Table[ UnrankSubset[n, Join[{1}, Table[2^2^i + 1, {i, 0, 4}]]], {n, 63}], 11]]], 60] (* Robert G. Wilson v, Jun 11 2005 *)
nn=10; logs=Log[2, {2, 3, 5, 17, 257, 65537}]; lim2=Floor[nn/logs[[1]]]; Sort[Reap[Do[z={i, j, k, l, m, n}.logs; If[z<=nn, Sow[2^z]], {i, 0, lim2}, {j, 0, 1}, {k, 0, 1}, {l, 0, 1}, {m, 0, 1}, {n, 0, 1}]][[2, 1]]]
A092506 = {2, 3, 5, 17, 257, 65537}; s = Sort[Times @@@ Subsets@ A092506]; mx = 1300; Union@ Flatten@ Table[(2^n)*s[[i]], {i, 64}, {n, 0, Log2[mx/s[[i]]]}] (* Robert G. Wilson v, Jul 28 2014 *)
PROG
(Haskell)
a003401 n = a003401_list !! (n-1)
a003401_list = map (+ 1) $ elemIndices 1 $ map a209229 a000010_list
-- Reinhard Zumkeller, Jul 31 2012
(PARI) for(n=1, 10^4, my(t=eulerphi(n)); if(t/2^valuation(t, 2)==1, print1(n, ", "))); \\ Joerg Arndt, Jul 29 2014
(PARI) is(n)=n>>=valuation(n, 2); if(n<7, return(n>0)); my(k=logint(logint(n, 2), 2)); if(k>32, my(p=2^2^k+1); if(n%p, return(0)); n/=p; unknown=1; if(n%p==0, return(0)); p=0; if(is(n)==0, 0, "unknown [has large Fermat number in factorization]"), 4294967295%n==0) \\ Charles R Greathouse IV, Jan 09 2022
(PARI) is(n)=n>>=valuation(n, 2); 4294967295%n==0 \\ valid for n <= 2^2^33, conjecturally valid for all n; Charles R Greathouse IV, Jan 09 2022
(Python)
from sympy import totient
A003401_list = [n for n in range(1, 10**4) if format(totient(n), 'b').count('1') == 1]
# Chai Wah Wu, Jan 12 2015
CROSSREFS
Subsequence of A295298. - Antti Karttunen, Nov 27 2017
A004729 and A051916 are subsequences. - Reinhard Zumkeller, Mar 20 2010
Cf. A000079, A004169, A000215, A099884, A019434 (Fermat primes).
Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272534 (15), A272535 (16), A228787 (17), A272536 (20).
Positions of zeros in A293516 (apart from two initial -1's), and in A336469, positions of ones in A295660 and in A336477 (characteristic function).
Cf. also A046528.
KEYWORD
nonn,nice,changed
EXTENSIONS
Definition clarified by Bill Gosper. - N. J. A. Sloane, Jun 14 2020
STATUS
approved
Numbers k such that 3*2^k + 1 is prime.
(Formerly M1318 N0506)
+10
23
1, 2, 5, 6, 8, 12, 18, 30, 36, 41, 66, 189, 201, 209, 276, 353, 408, 438, 534, 2208, 2816, 3168, 3189, 3912, 20909, 34350, 42294, 42665, 44685, 48150, 54792, 55182, 59973, 80190, 157169, 213321, 303093, 362765, 382449, 709968, 801978, 916773, 1832496, 2145353
OFFSET
1,2
COMMENTS
From Zak Seidov, Mar 08 2009: (Start)
List is complete up to 3941000 according to the list of RB & WK.
So far there are only 4 primes: 2, 5, 41, 353. (End)
REFERENCES
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 2, p. 614.
H. Riesel, "Prime numbers and computer methods for factorization", Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, see pp. 381-384.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Jeppe Stig Nielsen, Table of n, a(n) for n = 1..50
Ray Ballinger, Proth Search Page
Ray Ballinger and Wilfrid Keller, List of primes k.2^n + 1 for k < 300
C. K. Caldwell, The Prime Pages
S. W. Golomb, Properties of the sequence 3.2^n+1, Math. Comp., 30 (1976), 657-663.
S. W. Golomb, Properties of the sequence 3.2^n+1, Math. Comp., 30 (1976), 657-663. [Annotated scanned copy]
R. M. Robinson, A report on primes of the form k.2^n+1 and on factors of Fermat numbers, Proc. Amer. Math. Soc., 9 (1958), 673-681. [Annotated scanned copy of selected pages. The first page is (accidentally) included with the scan of the Wilson letter below.]
Eric Weisstein's World of Mathematics, Proth Prime
FORMULA
a(n) = log_2((A039687(n)-1)/3) = floor(log_2(A039687(n)/3)). - M. F. Hasler, Mar 03 2023
PROG
(PARI) is(n)=isprime(3*2^n+1) \\ Charles R Greathouse IV, Feb 17 2017
(PARI) A2253=[1]; A002253(n)=for(k=#A2253, n-1, my(m=A2253[k]); until(ispseudoprime(3<<m+++1), ); A2253=concat(A2253, m))+A2253[n] \\ M. F. Hasler, Mar 03 2023
CROSSREFS
See A039687 for the actual primes.
KEYWORD
hard,nonn,changed
EXTENSIONS
Corrected and extended according to the list of Ray Ballinger and Wilfrid Keller by Zak Seidov, Mar 08 2009
Edited by N. J. A. Sloane, Mar 13 2009
a(47) and a(48) from the Ballinger & Keller web page, Joerg Arndt, Apr 07 2013
a(49) from https://t5k.org/primes/page.php?id=116922, Fabrice Le Foulher, Mar 09 2014
Terms moved from Data to b-file (Links), and additional term appended to b-file, by Jeppe Stig Nielsen, Oct 30 2020
STATUS
approved
Numbers k such that 5*2^k + 1 is prime.
(Formerly M2635 N1046)
+10
15
1, 3, 7, 13, 15, 25, 39, 55, 75, 85, 127, 1947, 3313, 4687, 5947, 13165, 23473, 26607, 125413, 209787, 240937, 819739, 1282755, 1320487, 1777515
OFFSET
1,2
REFERENCES
H. Riesel, "Prime numbers and computer methods for factorization," Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985, Chap. 4, see pp. 381-384.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ray Ballinger, Proth Search Page
Ray Ballinger and Wilfrid Keller, List of primes k.2^n + 1 for k < 300
C. K. Caldwell, The Prime Pages
R. M. Robinson, A report on primes of the form k.2^n+1 and on factors of Fermat numbers, Proc. Amer. Math. Soc., 9 (1958), 673-681.
R. M. Robinson, A report on primes of the form k.2^n+1 and on factors of Fermat numbers, Proc. Amer. Math. Soc., 9 (1958), 673-681. [Annotated scanned copy of selected pages. The first page is (accidentally) included with the scan of the Wilson letter below.]
Eric Weisstein's World of Mathematics, Proth Prime
MATHEMATICA
lst={}; Do[If[PrimeQ[5*2^n+1], AppendTo[lst, n]], {n, 0, 2*10^3}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 19 2008 *)
PROG
(PARI) is(n)=isprime(5*2^n+1) \\ Charles R Greathouse IV, Feb 17 2017
CROSSREFS
Cf. A050526.
KEYWORD
hard,more,nonn,changed
EXTENSIONS
Corrected (removed incorrect term 40937) and added more terms (from http://web.archive.org/web/20161028080239/http://www.prothsearch.net/riesel.html), Joerg Arndt, Apr 07 2013
STATUS
approved
Smallest prime factor of the n-th Fermat number F(n) = 2^(2^n) + 1.
+10
14
3, 5, 17, 257, 65537, 641, 274177, 59649589127497217, 1238926361552897, 2424833, 45592577, 319489, 114689, 2710954639361, 116928085873074369829035993834596371340386703423373313, 1214251009, 825753601, 31065037602817, 13631489, 70525124609
OFFSET
0,1
COMMENTS
a(14) might need to be corrected if F(14) turns out to have a smaller factor than 116928085873074369829035993834596371340386703423373313. F(20) is composite, but no explicit factor is known. - Jeppe Stig Nielsen, Feb 11 2010
LINKS
Ivars Peterson, Cracking Fermat Numbers
Lorenzo Sauras-Altuzarra, Some properties of the factors of Fermat numbers, Art Discrete Appl. Math. (2022).
Eric Weisstein's World of Mathematics, Fermat Number
FORMULA
a(n) = A007117(n)*2^(n+2) + 1 for n >= 2. - Jianing Song, Mar 02 2021
a(n) = A020639(A000215(n)). - Alois P. Heinz, Oct 25 2024
EXAMPLE
F(0) = 2^(2^0) + 1 = 3, prime.
F(5) = 2^(2^5) + 1 = 4294967297 = 641*6700417.
So 3 as the 0th entry and 641 is the 5th term.
MATHEMATICA
Table[With[{k = 2^n}, FactorInteger[2^k + 1]][[1, 1]], {n, 0, 15, 1}] (* Vincenzo Librandi, Jul 23 2013 *)
PROG
(PARI) g(n)=for(x=9, n, y=Vec(ifactor(2^(2^x)+1)); print1(y[1]", ")) \\ Cino Hilliard, Jul 04 2007
CROSSREFS
Leading entries in triangle A050922.
KEYWORD
nonn,hard,changed
AUTHOR
Eric W. Weisstein, Mar 27 2004
EXTENSIONS
Edited by N. J. A. Sloane, Jul 02 2008 at the suggestion of R. J. Mathar
a(14)-a(15) added by Jeppe Stig Nielsen, Feb 11 2010
a(16)-a(19) added based on terms of A007117 by Jianing Song, Mar 02 2021
STATUS
approved
Let b(n) = 2^n with n >= 2, and let c = k*b(n) + 1 for k >= 1; then a(n) is the smallest k such that c is prime and such that A007814(r(n)) = A007814(k) + n where r(n) is the remainder of 2^(b(n)/4) mod c, or 0 if no such k exists.
+10
1
0, 0, 1, 8, 1024, 5, 1071, 6443, 52743, 1184, 11131, 39, 7, 856079, 3363658, 9264, 3150, 1313151, 13, 33629, 555296667, 534689, 8388607, 5, 512212693, 193652, 286330, 282030, 7224372579, 1120049, 149041
OFFSET
2,4
COMMENTS
a(n-2) <= A007117(n).
a(33) <= 5463561471303.
FORMULA
For n >= 1, a(A204620(n)) = 3; a(A226366(n)) = 5; a(A280003(n)) = 7.
PROG
(PARI) print1(0, ", "0", "); for(n=4, 32, b=2^n; k=1; t=0; while(t<1, c=k*b+1; if(isprime(c), r=Mod(2, c)^(b/4); if(lift(r/b)<=k, if(valuation(lift(r), 2)==valuation(k, 2)+n, t=1; print1(k, ", ")))); k++));
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved
Least odd k such that k*2^n + 1 is a prime factor of a Fermat number 2^(2^m) + 1 for some m, or 0 if no such value exists.
+10
0
0, 1, 1, 0, 1, 0, 0, 5, 1, 116503103764643, 0, 604944512477, 11131, 39, 7
OFFSET
0,8
COMMENTS
The sequence continues: a(15) = ?, 1, 17753925353, a(18) = ?, 1575, 13, 579, a(22) = ?
LINKS
Fermat factoring status, Prime factors of Fermat numbers
FermatSearch, Home page
Eric Weisstein's World of Mathematics, Fermat Number
CROSSREFS
KEYWORD
nonn,hard,changed
AUTHOR
STATUS
approved

Search completed in 0.012 seconds