[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276403
a(n) = if n mod 6 = 0 then 4*3^((n-6)/3) elif n mod 6 = 1 then 2^4*3^((n-10)/3) elif n mod 6 = 2 then 2^3*3^((n-8)/3) elif n mod 6 = 3 then 2^2*3^((n-6)/3) elif n mod 6 = 4 then 2*3^((n-4)/3) otherwise 3^((n-2)/3).
1
8, 12, 18, 27, 36, 48, 72, 108, 162, 243, 324, 432, 648, 972, 1458, 2187, 2916, 3888, 5832, 8748, 13122, 19683, 26244, 34992, 52488, 78732, 118098, 177147, 236196, 314928, 472392, 708588, 1062882, 1594323, 2125764, 2834352, 4251528, 6377292, 9565938, 14348907, 19131876, 25509168, 38263752
OFFSET
8,1
LINKS
Natasha Morrison and Alex Scott, Maximizing the number of induced cycles in a graph, Preprint, 2016. See f_2^o(n).
FORMULA
From Chai Wah Wu, Sep 12 2016: (Start)
a(n) = 9*a(n-6) for n > 13.
G.f.: x^8*(48*x^5 + 36*x^4 + 27*x^3 + 18*x^2 + 12*x + 8)/(1 - 9*x^6). (End)
MAPLE
f:=n->
if n mod 6 = 0 then 4*3^((n-6)/3)
elif n mod 6 = 1 then 2^4*3^((n-10)/3)
elif n mod 6 = 2 then 2^3*3^((n-8)/3)
elif n mod 6 = 3 then 2^2*3^((n-6)/3)
elif n mod 6 = 4 then 2*3^((n-4)/3)
else 3^((n-2)/3); fi;
[seq(f(n), n=8..60)];
MATHEMATICA
Table[Switch[Mod[n, 6], 0, 4*3^((n - 6)/3), 1, 2^4*3^((n - 10)/3), 2, 2^3*3^((n - 8)/3), 3, 2^2*3^((n - 6)/3), 4, 2*3^((n - 4)/3), 5, 3^((n - 2)/3)], {n, 8, 50}] (* or *)
DeleteCases[CoefficientList[Series[x^8*(48 x^5 + 36 x^4 + 27 x^3 + 18 x^2 + 12 x + 8)/(1 - 9 x^6), {x, 0, 50}], x], 0] (* Michael De Vlieger, Sep 12 2016 *)
PROG
(Sage)
def A276403():
W = [8, 12, 18, 27, 36, 48]
while True:
yield W[0]
W.append(9*W.pop(0))
a = A276403();
[next(a) for _ in range(43)] # after Chai Wah Wu, Peter Luschny, Sep 12 2016
(PARI) Vec(x^8*(8+12*x+18*x^2+27*x^3+36*x^4+48*x^5)/((1-3*x^3)*(1+3*x^3)) + O(x^60)) \\ Colin Barker, Sep 13 2016
CROSSREFS
Sequence in context: A293529 A028393 A066681 * A171241 A120137 A274951
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 12 2016
STATUS
approved