[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276402
A sequence related to the Somos-6 sequence A006722.
1
1, 1, -1, 1, -3, -3, 1, -25, 49, 1, 385, 1489, 503, 10753, -82371, -196419, -1575551, -12482641, 95770849, -739310591, 5684060161, 45018762529, 359479836623, 7751171129473, -59488778593731, -137028961472835, -29749898850946559, -441962130410844841
OFFSET
0,5
COMMENTS
This is the right-hand portion of a two-way infinite sequence ..., 1, -1, 1, 1, 1, 1, -1, 1, -3, -3, 1, -25, 49, 1, 385, 1489, 503, 10753, -82371, ...
0 = a(n+5)*a(n-4) + 2*a(n+4)*a(n-3) - 2*a(n+3)*a(n-2) - 4*a(n+2)*a(n-1) - 5*a(n+1)*a(n) = 2*a(n+5)*a(n-5) + 4*a(n+4)*a(n-4) + 5*a(n+3)*a(n-3) + 19*a(n+2)*a(n-2) + 18*a(n+1)*a(n-1) for all n in Z. - Michael Somos, Aug 14 2023
LINKS
Yuri N. Fedorov and Andrew N. W. Hone, Sigma-function solution to the general Somos-6 recurrence via hyperelliptic Prym varieties, arXiv:1512.00056 [nlin.SI], 2015-2016. See Eq. (6.8).
FORMULA
a(0) = a(1) = 1, a(2) = -1, a(3) = 1, a(4) = a(5)= -3, a(n+6)*a(n) = a(n+5)*a(n+1) + 2*a(n+4)*a(n+2) - 2*a(n+3)^2. - Seiichi Manyama, Sep 12 2016
a(n) = a(-1-n) for all n in Z. - Michael Somos, Aug 14 2023
MATHEMATICA
a[0] = a[1] = 1; a[2] = -1; a[3] = 1; a[4] = a[5] = -3;
a[n_] := a[n] = (-2a[n-3]^2 + 2a[n-4] a[n-2] + a[n-5] a[n-1])/a[n-6];
Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Aug 13 2018, after Seiichi Manyama *)
PROG
(PARI) {a(n) = if( n>-1 && n<3, [1, 1, -1][n+1], if( n<0, a(-1-n), (a(n-1)*a(n-5) + 2*a(n-2)*a(n-4) - 2*a(n-3)*a(n-3)) / a(n-6)))}; /* Michael Somos, Aug 14 2023 */
CROSSREFS
Cf. A006722.
Sequence in context: A174031 A228859 A259876 * A318110 A117262 A065431
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Sep 12 2016
EXTENSIONS
More terms from Seiichi Manyama, Sep 12 2016
STATUS
approved