[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276401
If n mod 3 = 0 then a(n) = 3^(n/3) + 12*n, if n mod 3 = 1 then a(n) = 4*3^((n-4)/3) + 12*n + 51, otherwise a(n) = 2*3^((n-2)/3) + 12*n - 36.
2
39, 103, 30, 81, 147, 78, 135, 207, 150, 225, 315, 294, 423, 567, 654, 945, 1251, 1662, 2439, 3231, 4614, 6849, 9099, 13398, 20007, 26631, 39678, 59409, 79155, 118446, 177543, 236655, 354678, 531873, 709083, 1063302, 1594791, 2126295, 3189102, 4783473, 6377859
OFFSET
3,1
LINKS
Natasha Morrison and Alex Scott, Maximizing the number of induced cycles in a graph, Preprint, 2016. See Cor. 1.3.
Natasha Morrison and Alex Scott, Maximising the number of induced cycles in a graph, Journal of Combinatorial Theory Series B 126 (2017), 24-61.
FORMULA
From Chai Wah Wu, Sep 11 2016: (Start)
a(n) = a(n-1) + 4*a(n-3) - 4*a(n-4) - 3*a(n-6) + 3*a(n-7) for n > 9.
a(n) = 4*a(n-3) - 3*a(n-6) - 72 for n > 8.
G.f.: x^3*(30*x^6 - 223*x^5 + 190*x^4 + 105*x^3 + 73*x^2 - 64*x - 39)/((x - 1)^2*(3*x^3 - 1)*(x^2 + x + 1)). (End)
MAPLE
f:=n-> if n mod 3 = 0 then 3^(n/3)+12*n
elif n mod 3 = 1 then 4*3^((n-4)/3)+12*n+51
else 2*3^((n-2)/3)+12*n-36; fi;
[seq(f(n), n=3..40)];
MATHEMATICA
CoefficientList[Series[(30 x^6 -223 x^5 + 190 x^4 + 105 x^3 + 73 x^2 - 64 x - 39) / ((x-1)^2 (3 x^3-1) (x^2+x+1)), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 12 2016 *)
Table[Which[Mod[n, 3]==0, 3^(n/3)+12n, Mod[n, 3]==1, 4*3^((n-4)/3)+12n+51, True, 2*3^((n-2)/3)+12n-36], {n, 3, 40}] (* Harvey P. Dale, Nov 16 2020 *)
CROSSREFS
Cf. A352669.
Sequence in context: A158339 A211499 A126077 * A044226 A044607 A244694
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 11 2016
STATUS
approved