[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051336
Number of increasing arithmetic progressions in {1,2,3,...,n}, including trivial arithmetic progressions of lengths 1 and 2.
8
1, 3, 7, 13, 22, 33, 48, 65, 86, 110, 138, 168, 204, 242, 284, 330, 381, 434, 493, 554, 621, 692, 767, 844, 929, 1017, 1109, 1205, 1307, 1411, 1523, 1637, 1757, 1881, 2009, 2141, 2282, 2425, 2572, 2723, 2882, 3043, 3212, 3383, 3560, 3743, 3930, 4119
OFFSET
1,2
COMMENTS
The number of arithmetic subsequences of [1, ..., n] with successive-term increment i and length k is (n-i*(k-1))(i > 0, k > 0, n > i*(k-1)). - Robert E. Sawyer (rs.1(AT)mindspring.com)
The best algorithm known for generating a(n) from scratch has order O(sqrt(n)) (see below). If a(n-1) is known, it reduces to O(n^(1/3)). - Daniel Hoying, May 20 2020
LINKS
Marcel K. Goh, Jad Hamdan, and Jonah Saks, The lattice of arithmetic progressions, arXiv:2106.05949 [math.CO], 2021.
Daniel Hoying, Proof of recurrence relation, May 19 2020.
FORMULA
Theorem: the second differences give tau(n+1), the number of divisors of n+1 (A000005).
a(n) = n + A078567(n).
a(n) = n + Sum_{ i=1..n-1, j=1..floor(n/i) } (n - i*j). - Robert E. Sawyer (rs.1(AT)mindspring.com)
From Daniel Hoying, May 15 2020: (Start)
a(n+1) = a(n) + 1 + Sum_{i=1..n} tau(i).
= a(n) + 1 + A006218(n+1).
a(n+1) = (n + 1)*(1 + Sum_{i=1..n} floor(n/i)) - Sum_{i=1..n} i*tau(i).
= (n + 1)*(1 + A006218(n)) - A143127(n). (End)
EXAMPLE
a(1): [1];
a(2): [1],[2],[1,2];
a(3): [1],[2],[3],[1,2],[1,3],[2,3],[1,2,3].
MATHEMATICA
nmax = 48; t = Table[ DivisorSigma[0, n], {n, 1, nmax}]; Accumulate[ Accumulate[t]+1] - Accumulate[t] (* Jean-François Alcover, Nov 08 2011 *)
With[{c=Accumulate[DivisorSigma[0, Range[50]]]}, Accumulate[c+1]-c] (* Harvey P. Dale, Dec 23 2015 *)
nmax = 50; RecurrenceTable[{a[n] == a[n-1]+1+p[n], p[n] == p[n-1]+DivisorSigma[0, n-1], a[1] == 1, p[1] == 0}, {a, p}, {n, 1, nmax}][[All, 1]] (* Daniel Hoying, May 16 2020 *)
PROG
(Python)
from math import isqrt
def A051336(n): return (((s:=isqrt(n-1))*(s+1))**2>>2)+(1-s**2)*n+sum((q:=(n-1)//k)*(2*n-k*(1+q)) for k in range(1, s+1)) # Chai Wah Wu, Oct 21 2023
CROSSREFS
Cf. A078567.
See A078651 and A366471 for GPs.
Sequence in context: A155354 A136219 A078582 * A253896 A002623 A173196
KEYWORD
nonn,easy,nice
AUTHOR
John W. Layman, Nov 02 1999
STATUS
approved