[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051338
Generalized Stirling number triangle of first kind.
10
1, -6, 1, 42, -13, 1, -336, 146, -21, 1, 3024, -1650, 335, -30, 1, -30240, 19524, -5000, 635, -40, 1, 332640, -245004, 74524, -11985, 1075, -51, 1, -3991680, 3272688, -1139292, 218344, -24885, 1687, -63, 1, 51891840, -46536624, 18083484, -3977764, 541849, -46816, 2506, -76, 1
OFFSET
0,2
COMMENTS
a(n,m)= ^6P_n^m in the notation of the given reference with a(0,0) := 1. The monic row polynomials s(n,x) := sum(a(n,m)*x^m,m=0..n) which are s(n,x)= product(x-(6+k),k=0..n-1), n >= 1 and s(0,x)=1 satisfy s(n,x+y) = sum(binomial(n,k)*s(k,x)*S1(n-k,y),k=0..n), with the Stirling1 polynomials S1(n,x)=sum(A008275(n,m)*x^m, m=1..n) and S1(0,x)=1. In the umbral calculus (see the S. Roman reference given in A048854) the s(n,x) polynomials are called Sheffer for (exp(6*t),exp(t)-1).
REFERENCES
Mitrinovic, D. S.; Mitrinovic, R. S.; Tableaux d'une classe de nombres relies aux nombres de Stirling. Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 1962, 77 pp.
LINKS
FORMULA
a(n, m)= a(n-1, m-1) - (n+5)*a(n-1, m), n >= m >= 0; a(n, m) := 0, n<m; a(n, -1) := 0, a(0, 0)=1.
E.g.f. for m-th column of signed triangle: ((log(1+x))^m)/(m!*(1+x)^6).
Triangle (signed) = [ -6, -1, -7, -2, -8, -3, -9, -4, -10, ...] DELTA A000035; triangle (unsigned) = [6, 1, 7, 2, 8, 3, 9, 4, 10, 5, 11, ...] DELTA A000035; where DELTA is Deléham's operator defined in A084938.
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then T(n,i) = f(n,i,6), for n=1,2,...;i=0...n. - Milan Janjic, Dec 21 2008
EXAMPLE
{1}; {-6,1}; {42,-13,1}; {-336,146,-21,1}; ... s(2,x)= 42-13*x+x^2; S1(2,x)= -x+x^2 (Stirling1).
MATHEMATICA
t[n_, i_] = Sum[(-1)^k*Binomial[n, k]*Pochhammer[6, k]*StirlingS1[n - k, i], {k, 0, n - i}]; Flatten[Table[t[n, i], {n, 0, 8}, {i, 0, n}]][[1 ;; 45]] (* Jean-François Alcover, Jun 01 2011, after Milan Janjic *)
PROG
(Haskell)
a051338 n k = a051338_tabl !! n !! k
a051338_row n = a051338_tabl !! n
a051338_tabl = map fst $ iterate (\(row, i) ->
(zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 6)
-- Reinhard Zumkeller, Mar 11 2014
CROSSREFS
Unsigned m=0 column sequence is: A001725. Row sums (signed triangle): A001720(n+4)*(-1)^n. Row sums (unsigned triangle): A001730(n+6).
Sequence in context: A145357 A035529 A135893 * A062138 A143498 A144356
KEYWORD
sign,easy,tabl
STATUS
approved