[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051337
Number of strongly connected tournaments on n nodes.
3
1, 1, 0, 1, 1, 6, 35, 353, 6008, 178133, 9355949, 884464590, 152310149735, 48234782263293, 28304491788158056, 30964247546702883729, 63468402142317299907481, 244785748571033855024746438, 1782909084196274276970660380187, 24602074618353524534591008760307017
OFFSET
0,6
COMMENTS
A tournament is strongly connected (or strong) if there is a directed path between any pair of points.
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 127, Eq. (5.2.4);
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 523.
LINKS
John W. Moon, Topics on tournaments, Holt, Rinehard and Winston (1968)
Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 11 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
Raphael Yuster, Vector clique decompositions, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (2019), 1221-1238.
FORMULA
G.f.: = 2 - 1/B(x) where B(x) = g.f. for A000568.
MATHEMATICA
m = 20;
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i - 1}], {i, 2, Length[v]}] + Sum[Quotient[v[[i]], 2], {i, 1, Length[v]}];
oddp[v_] := (For[i = 1, i <= Length[v], i++, If[BitAnd[v[[i]], 1] == 0, Return[0]]]; 1);
b[n_] := b[n] = (s = 0; Do[If[oddp[p] == 1, s += permcount[p]*2^edges[p]], {p, IntegerPartitions[n]}]; s/n!);
B[x_] = Sum[b[k] x^k, {k, 0, m}];
A[x_] = 2 - 1/B[x];
A[x] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Sep 12 2019, after Andrew Howroyd in A000568 *)
CROSSREFS
Sequence in context: A291595 A268139 A361241 * A267224 A192996 A192997
KEYWORD
nonn,nice,easy
EXTENSIONS
a(0)=1 prepended and a(18)-a(19) from Andrew Howroyd, Sep 10 2018
STATUS
approved