[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A039623
a(n) = n^2*(n^2+3)/4.
14
1, 7, 27, 76, 175, 351, 637, 1072, 1701, 2575, 3751, 5292, 7267, 9751, 12825, 16576, 21097, 26487, 32851, 40300, 48951, 58927, 70357, 83376, 98125, 114751, 133407, 154252, 177451, 203175, 231601, 262912, 297297, 334951, 376075, 420876, 469567
OFFSET
1,2
COMMENTS
Previous definition was: Consider a figure like this <> (a squashed square, symmetric about both axes); each side is given 1 of n colors; a(n) = number of possibilities, allowing turning over.
Also number of 2 X 2 matrices with entries mod n, up to row and column permutation. Number of k X l matrices with entries mod n, up to row and column permutation is Z(S_k X S_l; n,n,...) where Z(S_k X S_l; x_1,x_2,...) is cycle index of Cartesian product of symmetric groups S_k and S_l of degree k and l, respectively. - Vladeta Jovovic, Nov 04 2000
Also, if a 2-set Y and a 3-set Z are disjoint subsets of an n-set X then a(n-5) is the number of 6-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007
LINKS
Jean-Paul Delahaye, Le miraculeux "lemme de Burnside", pp. 145-6 in 'Pour la Science' (French edition of 'Scientific American'), No. 350, December 2006, Paris.
Milan Janjic and Boris Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
FORMULA
From Harvey P. Dale, Oct 01 2011: (Start)
G.f.: (1 + 2*x + 2*x^2 + x^3)/(1 - x)^5.
a(1)=1, a(2)=7, a(3)=27, a(4)=76, a(5)=175; for n>5, a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). (End)
E.g.f.: x*(4 + 10*x + 6*x^2 + x^3)*exp(x)/4. - Ilya Gutkovskiy, Apr 16 2016
a(n) = t(n-1)*t(n) + t(n-1) + t(n) where t=A000217. - J. M. Bergot, Apr 16 2016
a(n) = A000217(n)^2 - n*A000217(n-1). - Bruno Berselli, Feb 14 2017
a(n) = T(T(n-1)) + T(T(n)) where T(n) = A000217(n). - Charlie Marion, Feb 09 2023
Sum_{n>=1} 1/a(n) = 2*(1 + Pi^2 - sqrt(3)*Pi*coth(sqrt(3)*Pi))/9. - Amiram Eldar, Feb 13 2023
a(n) = binomial(n,2)*binomial(n+1,2) + n^2 = A006011(n) + A000290(n). - Detlef Meya, Nov 23 2023
MAPLE
A039623:=n->n^2*(n^2+3)/4: seq(A039623(n), n=1..50); # Wesley Ivan Hurt, Dec 26 2016
MATHEMATICA
Table[(n^2 (n^2+3))/4, {n, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 7, 27, 76, 175}, 40] (* Harvey P. Dale, Oct 01 2011 *)
PROG
(PARI) Vec((-1-2*x-2*x^2-x^3)/(x-1)^5 + O(x^50)) \\ Michel Marcus, Aug 23 2015
(PARI) a(n) = (1/4)*n^2*(n^2+3); \\ Altug Alkan, Apr 16 2016
(Magma) [n^2*(n^2+3)/4 : n in [1..50]]; // Wesley Ivan Hurt, Dec 26 2016
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
Christian Meland (christian.meland(AT)pfi.no)
EXTENSIONS
More terms from Sam Alexander
Simplified the definition. - N. J. A. Sloane, Apr 20 2016
STATUS
approved