[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374930
Expansion of Sum_{1<=i<=j<=k} q^(i+j+k)/( (1-q^i)*(1-q^j)*(1-q^k) )^2.
3
1, 7, 27, 77, 181, 378, 707, 1254, 2052, 3290, 4928, 7371, 10381, 14756, 19818, 27158, 35139, 46683, 58806, 76146, 93555, 119092, 143222, 178983, 212408, 261261, 305046, 371931, 428156, 515592, 589385, 701442, 792720, 939918, 1050567, 1233387, 1374835, 1600143, 1766583, 2052898, 2247784
OFFSET
3,2
LINKS
Tewodros Amdeberhan, George E. Andrews and Roberto Tauraso, Extensions of MacMahon's sums of divisors, arXiv:2309.03191v1 [math.CO], Sep 06 2023.
FORMULA
a(n) = (31*sigma_5(n) - 70*(n+1)*sigma_3(n) + (40*n^2+60*n+9)*sigma(n))/1920.
MATHEMATICA
A374930[n_] := (31*DivisorSigma[5, n] - 70*(n + 1)*DivisorSigma[3, n] + (40*n^2 + 60*n + 9)*DivisorSigma[1, n])/1920;
Array[A374930, 50, 3] (* Paolo Xausa, Jul 24 2024 *)
PROG
(PARI) a(n) = (31*sigma(n, 5)-70*(n+1)*sigma(n, 3)+(40*n^2+60*n+9)*sigma(n))/1920;
(Python)
from math import prod
from sympy import factorint
def A374930(n):
f = factorint(n).items()
return (31*prod((p**(5*(e+1))-1)//(p**5-1) for p, e in f)-70*(n+1)*prod((p**(3*(e+1))-1)//(p**3-1) for p, e in f) + (20*n*((n<<1)+3)+9)*prod((p**(e+1)-1)//(p-1) for p, e in f))//1920 # Chai Wah Wu, Jul 24 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 24 2024
STATUS
approved