[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Single projection Kaczmarz extended algorithms

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

An Erratum to this article was published on 14 August 2017

This article has been updated

Abstract

In order to find the least squares solution of a very large and inconsistent system of equations, one can employ the extended Kaczmarz algorithm. This method simultaneously removes the error term, so that a consistent system is asymptotically obtained, and applies Kaczmarz iterations for the current approximation of this system. It has been shown that for random corrections of the right hand side and Kaczmarz updates selected at random, the algorithm converges to the least squares solution. In this work we consider deterministic strategies like the maximal-residual and the almost-cyclic control, and show convergence to a least squares solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 14 August 2017

    An erratum to this article has been published.

References

  1. Ansorge, R.: Connections between the Cimmino-method and the Kaczmarz-method for the solution of singular and regular systems of equations. Computing 33(3–4), 367–375 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauschke, H., Borwein, J.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bregman, L.: The method of successive projection for finding a common point of convex sets. Soviet Math. Dokl. 6, 688–692 (1965)

    MATH  Google Scholar 

  4. Censor, Y.: Row-Action Methods for Huge and Sparse Systems and Their Applications. SIAM Rev. 23(4), 444–466 (1981). doi:10.1137/1023097. http://link.aip.org/link/?SIR/23/444/1

    Article  MathSciNet  MATH  Google Scholar 

  5. Censor, Y., Eggermont, P., Gordon, D.: Strong underrelaxation in Kaczmarz’s method for inconsistent systems. Numer. Math. 41(1), 83–92 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Censor, Y., Zenios, S.: Parallel Optimization: Theory, Algorithms And Applications. Oxford University Press (1997)

  7. Combettes, P.: Quasi-FejÉrian analysis of some optimization algorithms. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, pp. 115–152. Elsevier, New York (2001)

    Chapter  Google Scholar 

  8. Eldar, Y., Needell, D.: Acceleration of randomized Kaczmarz method via the Johnson-Lindenstrauss Lemma. Numer. Algorithms 58, 163–177 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29(3), 471–481 (1970). http://view.ncbi.nlm.nih.gov/pubmed/5492997

    Article  Google Scholar 

  10. Gubin, L.G., Polyak, B.T., Raik, E.V.: The method of projections for finding the common point of convex sets. USSR Comput. Math. Math. Phys. 7(6), 1–24 (1967). doi:10.1016/0041-5553(67)90113-9. http://www.sciencedirect. com/science/article/pii/0041555367901139

    Article  Google Scholar 

  11. Herman, G., Lent, A., Lutz, P.: Relaxation methods for image reconstruction. Commun. ACM 21(2), 152–158 (1978). doi:10.1145/359340.359351

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaczmarz, S.: Angenäherte Auflösung von Systemen linearer Gleichungen. Bull. Int. de l’Acad. Polonaise Sci. Lettres 35, 355–357 (1937)

    MATH  Google Scholar 

  13. Ma, A., Needell, D., Ramdas, A.: Convergence properties of the randomized extended Gauss-Seidel and Kaczmarz methods. ArXiv e-prints (2015)

  14. Natterer, F.: The Mathematics of Computerized Tomography. Wiley (1986)

  15. Needell, D.: Randomized Kaczmarz solvers for noisy linear systems. BIT Numer. Math. 50, 395–403 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Needell, D., Tropp, J.: Paved with good intentions: analysis of a randomized block Kaczmarz method. Lin. Algebra Appl. 441, 199–221 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Popa, C.: Extensions of block-projections methods with relaxation parameters to inconsistent and rank-defficient least-squares problems. B I T 38(1), 151–176 (1995)

    MATH  Google Scholar 

  18. Popa, C.: Least-squares solution of overdetermined inconsistent linear systems using Kaczmarz’s relaxation. Int. J. Comp. Math. 55(1-2), 79–89 (1995)

    Article  MATH  Google Scholar 

  19. Popa, C., Zdunek, R.: Kaczmarz extended algorithm for tomographic image reconstruction from limited data. Math. Comput. Simul. 65(6), 579–598 (2004). MR2059639.pdf

    Article  MathSciNet  Google Scholar 

  20. Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15, 262–278 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tanabe, K.: Projection method for solving a singular system of linear equations and its applications. Numer. Math. 17(3), 203–214 (1971). doi:10.1007/bf01436376

    Article  MathSciNet  MATH  Google Scholar 

  22. Zouzias, A., Freris, N.: Randomized extended kaczmarz for solving least squares. SIAM. J. Matrix Anal. Appl 34(2), 773–793 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Popa.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s11075-017-0390-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petra, S., Popa, C. Single projection Kaczmarz extended algorithms. Numer Algor 73, 791–806 (2016). https://doi.org/10.1007/s11075-016-0118-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0118-7

Keywords

Navigation