Abstract
In order to find the least squares solution of a very large and inconsistent system of equations, one can employ the extended Kaczmarz algorithm. This method simultaneously removes the error term, so that a consistent system is asymptotically obtained, and applies Kaczmarz iterations for the current approximation of this system. It has been shown that for random corrections of the right hand side and Kaczmarz updates selected at random, the algorithm converges to the least squares solution. In this work we consider deterministic strategies like the maximal-residual and the almost-cyclic control, and show convergence to a least squares solution.
Similar content being viewed by others
Change history
14 August 2017
An erratum to this article has been published.
References
Ansorge, R.: Connections between the Cimmino-method and the Kaczmarz-method for the solution of singular and regular systems of equations. Computing 33(3–4), 367–375 (1984)
Bauschke, H., Borwein, J.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)
Bregman, L.: The method of successive projection for finding a common point of convex sets. Soviet Math. Dokl. 6, 688–692 (1965)
Censor, Y.: Row-Action Methods for Huge and Sparse Systems and Their Applications. SIAM Rev. 23(4), 444–466 (1981). doi:10.1137/1023097. http://link.aip.org/link/?SIR/23/444/1
Censor, Y., Eggermont, P., Gordon, D.: Strong underrelaxation in Kaczmarz’s method for inconsistent systems. Numer. Math. 41(1), 83–92 (1983)
Censor, Y., Zenios, S.: Parallel Optimization: Theory, Algorithms And Applications. Oxford University Press (1997)
Combettes, P.: Quasi-FejÉrian analysis of some optimization algorithms. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, pp. 115–152. Elsevier, New York (2001)
Eldar, Y., Needell, D.: Acceleration of randomized Kaczmarz method via the Johnson-Lindenstrauss Lemma. Numer. Algorithms 58, 163–177 (2011)
Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29(3), 471–481 (1970). http://view.ncbi.nlm.nih.gov/pubmed/5492997
Gubin, L.G., Polyak, B.T., Raik, E.V.: The method of projections for finding the common point of convex sets. USSR Comput. Math. Math. Phys. 7(6), 1–24 (1967). doi:10.1016/0041-5553(67)90113-9. http://www.sciencedirect. com/science/article/pii/0041555367901139
Herman, G., Lent, A., Lutz, P.: Relaxation methods for image reconstruction. Commun. ACM 21(2), 152–158 (1978). doi:10.1145/359340.359351
Kaczmarz, S.: Angenäherte Auflösung von Systemen linearer Gleichungen. Bull. Int. de l’Acad. Polonaise Sci. Lettres 35, 355–357 (1937)
Ma, A., Needell, D., Ramdas, A.: Convergence properties of the randomized extended Gauss-Seidel and Kaczmarz methods. ArXiv e-prints (2015)
Natterer, F.: The Mathematics of Computerized Tomography. Wiley (1986)
Needell, D.: Randomized Kaczmarz solvers for noisy linear systems. BIT Numer. Math. 50, 395–403 (2010)
Needell, D., Tropp, J.: Paved with good intentions: analysis of a randomized block Kaczmarz method. Lin. Algebra Appl. 441, 199–221 (2014)
Popa, C.: Extensions of block-projections methods with relaxation parameters to inconsistent and rank-defficient least-squares problems. B I T 38(1), 151–176 (1995)
Popa, C.: Least-squares solution of overdetermined inconsistent linear systems using Kaczmarz’s relaxation. Int. J. Comp. Math. 55(1-2), 79–89 (1995)
Popa, C., Zdunek, R.: Kaczmarz extended algorithm for tomographic image reconstruction from limited data. Math. Comput. Simul. 65(6), 579–598 (2004). MR2059639.pdf
Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15, 262–278 (2009)
Tanabe, K.: Projection method for solving a singular system of linear equations and its applications. Numer. Math. 17(3), 203–214 (1971). doi:10.1007/bf01436376
Zouzias, A., Freris, N.: Randomized extended kaczmarz for solving least squares. SIAM. J. Matrix Anal. Appl 34(2), 773–793 (2013)
Author information
Authors and Affiliations
Corresponding author
Additional information
An erratum to this article is available at https://doi.org/10.1007/s11075-017-0390-1.
Rights and permissions
About this article
Cite this article
Petra, S., Popa, C. Single projection Kaczmarz extended algorithms. Numer Algor 73, 791–806 (2016). https://doi.org/10.1007/s11075-016-0118-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-016-0118-7