Abstract
The Kaczmarz method is an algorithm for finding the solution to an overdetermined consistent system of linear equations Ax = b by iteratively projecting onto the solution spaces. The randomized version put forth by Strohmer and Vershynin yields provably exponential convergence in expectation, which for highly overdetermined systems even outperforms the conjugate gradient method. In this article we present a modified version of the randomized Kaczmarz method which at each iteration selects the optimal projection from a randomly chosen set, which in most cases significantly improves the convergence rate. We utilize a Johnson–Lindenstrauss dimension reduction technique to keep the runtime on the same order as the original randomized version, adding only extra preprocessing time. We present a series of empirical studies which demonstrate the remarkable acceleration in convergence to the solution using this modified approach.
Similar content being viewed by others
References
Achlioptas, D.: Database-friendly random projections: Johnson–Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66(4), 671–687 (2003) (Special issue of invited papers from PODS’01)
Ailon, N., Chazelle, B.: The fast johnson-lindenstrauss transform and approximate nearest neighbors. SIAM J. Comput. 39, 302–322 (2009)
Ailon, N., Liberty, E.: Almost optimal unrestricted fast johnson-lindenstrauss transform. Available at http://arxiv.org/abs/1005.5513 (2010)
Cenker, C., Feichtinger, H.G., Mayer, M., Steier, H., Strohmer, T.: New variants of the POCS method using affine subspaces of finite codimension, with applications to irregular sampling. In: Proc. SPIE: Visual Communications and Image Processing, pp. 299–310 (1992)
Chan, T.F., Wan, W.L.: Analysis of projection methods for solving linear systems with multiple right-hand sides. SIAM J. Sci. Comput. 18, 1698–1721 (1997)
Dasgupta, D., Gupta, A.: An elementary proof of the Johnson–Lindenstrauss lemma. Tech. Report 99-006, U.C. Berkeley (1999)
Dasgupta, S., Gupta, A.: An elementary proof of a theorem of Johnson and Lindenstrauss. Random Struct. Algorithms 22(1), 60–65 (2003)
Deutsch, F., Hundal, H.: The rate of convergence for the method of alternating projections. J. Math. Anal. Appl. 205(2), 381–405 (1997)
Drineas, P., Mahoney, M.W., Muthukrishnan, S.: Sampling algorithms for ℓ2 regression and applications. In: Proc. 17th Ann. ACM-SIAM Symp. on Discrete Algorithms, pp. 1127–1136 (2006)
Drineas, P., Mahoney, M.W., Muthukrishnan, S.: Relative-error CUR matrix decompositions. SIAM J. Matrix Anal. A 30, 844–881 (2008)
Farhat, C., Roux, F.X.: Implicit parallel processing in structural mechanics. Tech. report cu-cssc-93-26, Center for Aerospace Structures, University of Colorado, Boulder, CO (1993)
Galàntai, A.: On the rate of convergence of the alternating projection method in finite dimensional spaces. J. Math. Anal. Appl. 310(1), 30–44 (2005)
Hanke, M., Niethammer, W.: On the acceleration of Kaczmarz’s method for inconsistent linear systems. Linear Algebra Appl. 130, 83–98 (1990)
Herman, G.T., Meyer, L.B.: Algebraic reconstruction techniques can be made computationally efficient. IEEE Trans. Med. Imag. 12(3), 600–609 (1993)
Hinrichs, A., Vybiral, J.: Johnson-lindenstrauss lemma for circulant matrices. Random Struct. Algor. (to appear)
Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Symp. on Theory of Computing, pp. 604–613 (1998)
Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. In: Conf. in Modern Analysis and Probability, pp. 189–206 (1984)
Kaczmarz, S.: Angenäherte Auflösung von Systemen linearer Gleichungen. Bulletin International de l’Académie Polonaise des Sciences et des Lettres. Classe des Sciences Mathématiques et Naturelles. Série A, Sciences Mathématiques 35, 335–357 (1937)
Natterer, F.: The Mathematics of Computerized Tomography. Wiley, New York (1986)
Needell, D.: Randomized Kaczmarz solver for noisy linear systems. BIT Num. Math. 50(2), 395–403 (2010)
Sezan, K.M., Stark, H.: Applications of convex projection theory to image recovery in tomography and related areas. In: Stark, H. (ed.) Image Recovery: Theory and Application, pp. 415–462. Academic, New York (1987)
Smith, C.F., Peterson, A.F., Mittra, R.: A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields. IEEE Trans. Antennas Propag. 37, 1490–1493 (1989)
Strohmer, T.: A levinson-galerkin algorithm for regularized trigonometric approximation. SIAM J. Sci. Comput. 22(4), 1160–1183 (2000)
Strohmer, T., Vershynin, R.: A randomized solver for linear systems with exponential convergence. In: RANDOM 2006 (10th International Workshop on Randomization and Computation). Lecture Notes in Computer Science, number 4110, pp. 499–507. Springer (2006)
Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15, 262–278 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Eldar, Y.C., Needell, D. Acceleration of randomized Kaczmarz method via the Johnson–Lindenstrauss Lemma. Numer Algor 58, 163–177 (2011). https://doi.org/10.1007/s11075-011-9451-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-011-9451-z