Abstract
The Kaczmarz method for solving linear systems of equations is an iterative algorithm that has found many applications ranging from computer tomography to digital signal processing. Despite the popularity of this method, useful theoretical estimates for its rate of convergence are still scarce. We introduce a randomized version of the Kaczmarz method for consistent, overdetermined linear systems and we prove that it converges with expected exponential rate. Furthermore, this is the first solver whose rate does not depend on the number of equations in the system. The solver does not even need to know the whole system but only a small random part of it. It thus outperforms all previously known methods on general extremely overdetermined systems. Even for moderately overdetermined systems, numerical simulations as well as theoretical analysis reveal that our algorithm can converge faster than the celebrated conjugate gradient algorithm. Furthermore, our theory and numerical simulations confirm a prediction of Feichtinger et al. in the context of reconstructing bandlimited functions from nonuniform sampling.
Similar content being viewed by others
References
Bass, R.F., Gröchenig, K.: Random sampling of multivariate trigonometric polynomials. SIAM J. Math. Anal. 36(3), 773–795 (2004/05)
Benedetto, J.J., Ferreira, P.J.S.G. (eds.): Modern Sampling Theory: Mathematics and Applications. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2001)
Cenker, C., Feichtinger, H.G., Mayer, M., Steier, H., Strohmer, T.: New variants of the POCS method using affine subspaces of finite codimension, with applications to irregular sampling. In: Proc. SPIE: Visual Communications and Image Processing, pp. 299–310 (1992)
Censor, Y., Eggermont, P.P.B., Gordon, D.: Strong underrelaxation in Kaczmarz’s method for inconsistent linear systems. Numer. Math. 41, 83–92 (1983)
Demmel, J.: The probability that a numerical analysis problem is difficult. Math. Comput. 50(182), 449–480 (1988)
Deutsch, F.: Rate of convergence of the method of alternating projections. In: Parametric Optimization and Approximation (Oberwolfach, 1983). Internat. Schriftenreihe Numer. Math., vol. 72, pp. 96–107. Birkhäuser, Basel (1985)
Deutsch, F., Hundal, H.: The rate of convergence for the method of alternating projections. II. J. Math. Anal. Appl. 205(2), 381–405 (1997)
Edelman, A.: Eigenvalues and condition numbers of random matrices. SIAM J. Matrix Anal. Appl. 9(4), 543–560 (1988)
Edelman, A.: On the distribution of a scaled condition number. Math. Comput. 58(197), 185–190 (1992)
Edelman, A., Sutton, B.D.: Tails of condition number distributions. SIAM J. Matrix Anal. Appl. 27(2), 547–560 (2005)
Feichtinger, H.G., Gröchenig, K.H.: Theory and practice of irregular sampling. In: Benedetto, J., Frazier, M. (eds.) Wavelets: Mathematics and Applications, pp. 305–363. CRC Press, Boca Raton (1994)
Feichtinger, H.G., Gröchenig, K., Strohmer, T.: Efficient numerical methods in non-uniform sampling theory. Numer. Math. 69, 423–440 (1995)
Frieze, A., Kannan, R., Vempala, S.: Fast Monte-Carlo algorithms for finding low-rank approximations. Proc. Found. Comput. Sci. 39, 378–390 (1998). Journal version in J. ACM 51, 1025–1041 (2004)
Galántai, A.: On the rate of convergence of the alternating projection method in finite dimensional spaces. J. Math. Anal. Appl. 310(1), 30–44 (2005)
Geman, S.: Limit theorem for the norm of random matrices. Ann. Probab. 8(2), 252–261 (1980)
Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins, Baltimore (1996)
Gröchenig, K.: Reconstruction algorithms in irregular sampling. Math. Comput. 59, 181–194 (1992)
Gröchenig, K.: Irregular sampling, Toeplitz matrices, and the approximation of entire functions of exponential type. Math. Comput. 68, 749–765 (1999)
Hanke, M.: Conjugate Gradient Type Methods for Ill-Posed Problems. Longman Scientific & Technical, Harlow (1995)
Hanke, M., Niethammer, W.: On the acceleration of Kaczmarz’s method for inconsistent linear systems. Linear Algebra Appl. 130, 83–98 (1990)
Hanke, M., Niethammer, W.: On the use of small relaxation parameters in Kaczmarz’s method. Z. Angew. Math. Mech. 70(6), T575–T576 (1990). Bericht über die Wissenschaftliche Jahrestagung der GAMM (Karlsruhe, 1989)
Herman, G.T.: Image Reconstruction from Projections. The Fundamentals of Computerized Tomography. Computer Science and Applied Mathematics. Academic Press, New York (1980).
Herman, G.T., Meyer, L.B.: Algebraic reconstruction techniques can be made computationally efficient. IEEE Trans. Medical Imaging 12(3), 600–609 (1993)
Herman, G.T., Lent, A., Lutz, P.H.: Relaxation methods for image reconstruction. Commun. Assoc. Comput. Mach. 21, 152–158 (1978)
Hounsfield, G.N.: Computerized transverse axial scanning (tomography): Part I. Description of the system. Br. J. Radiol. 46, 1016–1022 (1973)
Kaczmarz, S.: Angenäherte Auflösung von Systemen linearer Gleichungen. Bull. Int. Acad. Polon. Sci. Lett. A 335–357 (1937)
Natterer, F.: The Mathematics of Computerized Tomography. Wiley, New York (1986)
Rudelson, M., Vershynin, R.: Sampling from large matrices: an approach through geometric functional analysis. J. ACM 54(4), 21 (2006)
Rudelson, M., Vershynin, R.: Invertibility of random matrices. I. The smallest singular value is of order n −1/2. Preprint
Rudelson, M., Vershynin, R.: Invertibility of random matrices. II. The Littlewood–Offord theory. Preprint
Sezan, K.M., Stark, H.: Applications of convex projection theory to image recovery in tomography and related areas. In: Stark, H. (ed.) Image Recovery: Theory and Application, pp. 415–462. Acad. Press, San Diego (1987)
Silverstein, J.W.: The smallest eigenvalue of a large-dimensional Wishart matrix. Ann. Probab. 13(4), 1364–1368 (1985)
Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms. In: Proceedings of the International Congress of Mathematicians, vol. I, pp. 597–606. Higher Ed. Press, Beijing (2002).
Tao, T., Vu, V.: Inverse Littlewood–Offord theorems and the condition number of random discrete matrices. Ann. Math. (2008, to appear)
van der Sluis, A., van der Vorst, H.A.: The rate of convergence of conjugate gradients. Numer. Math. 48, 543–560 (1986)
Yeh, S., Stark, H.: Iterative and one-step reconstruction from nonuniform samples by convex projections. J. Opt. Soc. Am. A 7(3), 491–499 (1990)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Peter G. Casazza.
T. Strohmer was supported by NSF DMS grant 0511461. R. Vershynin was supported by the Alfred P. Sloan Foundation and by NSF DMS grant 0401032.
Rights and permissions
About this article
Cite this article
Strohmer, T., Vershynin, R. A Randomized Kaczmarz Algorithm with Exponential Convergence. J Fourier Anal Appl 15, 262–278 (2009). https://doi.org/10.1007/s00041-008-9030-4
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00041-008-9030-4