Abstract
In this paper we consider the contraction-proximal point algorithm: \({x_{n+1}=\alpha_nu+\lambda_nx_n+\gamma_nJ_{\beta_n}x_n,}\) where \({J_{\beta_n}}\) denotes the resolvent of a monotone operator A. Under the assumption that lim n α n = 0, ∑ n α n = ∞, lim inf n β n > 0, and lim inf n γ n > 0, we prove the strong convergence of the iterates as well as its inexact version. As a result we improve and recover some recent results by Boikanyo and Morosanu.
Similar content being viewed by others
References
Bauschke H.H., Combettes P.L.: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26, 248–264 (2001)
Boikanyo O.A., Morosanu G.: A proximal point algorithm converging strongly for general errors. Optim. Lett. 4, 635–641 (2010)
Boikanyo O.A., Morosanu G.: Four parameter proximal point algorithms. Nonlinear Anal. 74, 544–555 (2011)
Boikanyo, O.A., Morosanu, G.: Inexact Halpern-type proximal point algorithm, J. Glob. Optim. (to appear)
Goebel K., Kirk W.A.: Topics on Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)
Güler O.: On the convergence of the proximal point algorithm for convex optimization. SIAM J. Control Optim. 29, 403–419 (1991)
Kamimura S., Takahashi W.: Approximating solutions of maximal monotone operators in Hilbert spaces. J. Approx. Theory 106, 226–240 (2000)
Lehdili N., Moudafi A.: Combining the proximal algorithm and Tikhonov method. Optimization 37, 239–252 (1996)
Maingé P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 16, 899–912 (2008)
Marino G., Xu H.K.: Convergence of generalized proximal point algorithm. Comm. Pure Appl. Anal. 3, 791–808 (2004)
Rockafellar R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)
Solodov M.V., Svaiter B.F.: Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Program. Ser. A 87, 189–202 (2000)
Song Y., Yang C.: A note on a paper “A regularization method for the proximal point algorithm”. J. Global Optim. 43, 171–174 (2009)
Wang F.: A note on the regularized proximal point algorithm. J. Glob. Optim. 50, 531–535 (2011)
Xu H.K.: A regularization method for the proximal point algorithm. J. Glob. Optim. 36, 115–125 (2006)
Xu H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)
Yao Y., Noor M.A.: On convergence criteria of generalized proximal point algorithms. J. Comput. Appl. Math. 217, 46–55 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, F., Cui, H. On the contraction-proximal point algorithms with multi-parameters. J Glob Optim 54, 485–491 (2012). https://doi.org/10.1007/s10898-011-9772-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-011-9772-4