[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A proximal point algorithm converging strongly for general errors

  • Short Communication
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper a proximal point algorithm (PPA) for maximal monotone operators with appropriate regularization parameters is considered. A strong convergence result for PPA is stated and proved under the general condition that the error sequence tends to zero in norm. Note that Rockafellar (SIAM J Control Optim 14:877–898, 1976) assumed summability for the error sequence to derive weak convergence of PPA in its initial form, and this restrictive condition on errors has been extensively used so far for different versions of PPA. Thus this Note provides a solution to a long standing open problem and in particular offers new possibilities towards the approximation of the minimum points of convex functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  1. Boikanyo O.A., Moroşanu G.: Modified Rockafellar’s algorithms. Math. Sci. Res. J. 13(5), 101–122 (2009)

    MATH  MathSciNet  Google Scholar 

  2. Lehdili N., Moudafi A.: Combining the proximal point for convex optimization. Optimization 37, 239–252 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Moroşanu G.: Nonlinear Evolution Equations and Applications. D Reidel, Dordrecht (1988)

    MATH  Google Scholar 

  4. Rockafellar R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  5. Song Y., Yang C.: A note on the paper “A regularization method for the proximal point algorithm”. J. Glob. Optim. 43, 171–174 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Xu H.K.: A regularization method for the proximal point algorithm. J. Glob. Optim. 36, 115–125 (2006)

    Article  MATH  Google Scholar 

  7. Xu H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66(2), 240–256 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Moroşanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boikanyo, O.A., Moroşanu, G. A proximal point algorithm converging strongly for general errors. Optim Lett 4, 635–641 (2010). https://doi.org/10.1007/s11590-010-0176-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-010-0176-z

Keywords

Navigation