Abstract
A regularization method for the proximal point algorithm of finding a zero for a maximal monotone operator in a Hilbert space is proposed. Strong convergence of this algorithm is proved.
Similar content being viewed by others
References
Brezis H. (1973). Operateurs Maximaux Monotones et Semi-Groups de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam
Goebel, K. and Kirk, W.A. (1990), Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, Vol. 28, Cambridge University Press.
Güler O. (1991) On the convergence of the proximal point algorithm for convex optimization. SIAM Journal of Control Optimization 29:403–419
Kamimura S. and Takahashi W. (2003), Strong convergence of a proximal-type algorithm in a Banach space. SIAM Journal of Optimization 13(3):938–945
Lehdili N. and Moudafi A. (1996). Combining the proximal algorithm and Tikhonov regularization. Optimization 37:239–252
Rockafellar R.T. (1976). Monotone operators and the proximal point algorithm. SIAM Journal of Control Optimization 14: 877–898
Solodov M.V. and Svaiter B.F. (2000), Forcing strong convergence of proximal point iterations in a Hilbert space. Mathematical Programming, Series A 87:189–202
Xu H.K. (2002). Iterative algorithms for nonlinear operators. Journal of the London Mathematical Society 66:240–256
Author information
Authors and Affiliations
Corresponding author
Additional information
Hong-Kun Xu: Supported in part by NRF
Rights and permissions
About this article
Cite this article
Xu, HK. A Regularization Method for the Proximal Point Algorithm. J Glob Optim 36, 115–125 (2006). https://doi.org/10.1007/s10898-006-9002-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-006-9002-7
Keywords
- maximal monotone operator
- projection
- proximal point algorithm
- regularization method
- resolvent identity
- strong convergence