[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Regularization Method for the Proximal Point Algorithm

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A regularization method for the proximal point algorithm of finding a zero for a maximal monotone operator in a Hilbert space is proposed. Strong convergence of this algorithm is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brezis H. (1973). Operateurs Maximaux Monotones et Semi-Groups de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam

    Google Scholar 

  2. Goebel, K. and Kirk, W.A. (1990), Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, Vol. 28, Cambridge University Press.

  3. Güler O. (1991) On the convergence of the proximal point algorithm for convex optimization. SIAM Journal of Control Optimization 29:403–419

    Article  Google Scholar 

  4. Kamimura S. and Takahashi W. (2003), Strong convergence of a proximal-type algorithm in a Banach space. SIAM Journal of Optimization 13(3):938–945

    Article  Google Scholar 

  5. Lehdili N. and Moudafi A. (1996). Combining the proximal algorithm and Tikhonov regularization. Optimization 37:239–252

    Article  Google Scholar 

  6. Rockafellar R.T. (1976). Monotone operators and the proximal point algorithm. SIAM Journal of Control Optimization 14: 877–898

    Article  Google Scholar 

  7. Solodov M.V. and Svaiter B.F. (2000), Forcing strong convergence of proximal point iterations in a Hilbert space. Mathematical Programming, Series A 87:189–202

    Google Scholar 

  8. Xu H.K. (2002). Iterative algorithms for nonlinear operators. Journal of the London Mathematical Society 66:240–256

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Kun Xu.

Additional information

Hong-Kun Xu: Supported in part by NRF

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, HK. A Regularization Method for the Proximal Point Algorithm. J Glob Optim 36, 115–125 (2006). https://doi.org/10.1007/s10898-006-9002-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-006-9002-7

Keywords

Keywords

Navigation