[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The MSSM spectrum from (0,2)-deformations of the heterotic standard embedding

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We construct supersymmetric compactifications of E 8×E 8 heterotic string theory which realise exactly the massless spectrum of the Minimal Supersymmetric Standard Model (MSSM) at low energies. The starting point is the standard embedding on a Calabi-Yau threefold which has Hodge numbers (h 1,1, h 2,1) = (1, 4) and fundamental group \( {\mathbb{Z}_{{12}}} \), which gives an E 6 grand unified theory with three net chiral generations. The gauge sym- metry is then broken to that of the standard model by a combination of discrete Wilson lines and continuous deformation of the gauge bundle. On eight distinct branches of the moduli space, we find stable bundles with appropriate cohomology groups to give exactly the massless spectrum of the MSSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum Configurations for Superstrings, Nucl. Phys. B 258 (1985) 46 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A Three Generation Superstring Model. 2. Symmetry Breaking and the Low-Energy Theory, Nucl. Phys. B 292 (1987) 606 [INSPIRE].

    Article  ADS  Google Scholar 

  3. S.K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, P. Lond. Math. Soc. 50 (1985) 1.

    Article  MathSciNet  MATH  Google Scholar 

  4. K. Uhlenbeck and S. T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Commun. Pur. Appl. Math. 39 (1986) 257.

    Article  MathSciNet  Google Scholar 

  5. V. Braun, Y.-H. He and B.A. Ovrut, Stability of the minimal heterotic standard model bundle, JHEP 06 (2006) 032 [hep-th/0602073] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. L.B. Anderson, Y.-H. He and A. Lukas, Monad Bundles in Heterotic String Compactifications, JHEP 07 (2008) 104 [arXiv:0805.2875] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The Edge Of Supersymmetry: Stability Walls in Heterotic Theory, Phys. Lett. B 677 (2009) 190 [arXiv:0903.5088] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stability Walls in Heterotic Theories, JHEP 09 (2009) 026 [arXiv:0905.1748] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. V. Bouchard and R. Donagi, An SU(5) heterotic standard model, Phys. Lett. B 633 (2006) 783 [hep-th/0512149] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. L.B. Anderson, J. Gray, A. Lukas and E. Palti, Two Hundred Heterotic Standard Models on Smooth Calabi-Yau Threefolds, Phys. Rev. D 84 (2011) 106005 [arXiv:1106.4804] [INSPIRE].

    ADS  Google Scholar 

  11. V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, The Exact MSSM spectrum from string theory, JHEP 05 (2006) 043 [hep-th/0512177] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. V. Bouchard and R. Donagi, On heterotic model constraints, JHEP 08 (2008) 060 [arXiv:0804.2096] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. L.B. Anderson, J. Gray, Y.-H. He and A. Lukas, Exploring Positive Monad Bundles And A New Heterotic Standard Model, JHEP 02 (2010) 054 [arXiv:0911.1569] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. J. McOrist and I.V. Melnikov, Old issues and linear σ-models, arXiv:1103.1322 [INSPIRE].

  15. V. Braun, P. Candelas and R. Davies, A Three-Generation Calabi-Yau Manifold with Small Hodge Numbers, Fortsch. Phys. 58 (2010) 467 [arXiv:0910.5464] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. V. Braun, On Free Quotients of Complete Intersection Calabi-Yau Manifolds, JHEP 04 (2011) 005 [arXiv:1003.3235] [INSPIRE].

    Article  ADS  Google Scholar 

  17. J. Li and S.-T. Yau, The Existence of supersymmetric string theory with torsion, hep-th/0411136 [INSPIRE].

  18. R. Donagi, R. Reinbacher and S.-T. Yau, Yukawa couplings on quintic threefolds, hep-th/0605203 [INSPIRE].

  19. B. McInnes, Group theoretic aspects of the Hosotani mechanism, J. Phys. A 22 (1989) 2309 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. R. Donagi, B.A. Ovrut, T. Pantev and R. Reinbacher, SU(4) instantons on Calabi-Yau threefolds with Z(2) × Z(2) fundamental group, JHEP 01 (2004) 022 [hep-th/0307273] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom. 3 (1994) 493 [alg-geom/9310003] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  22. M. Kreuzer and H. Skarke, Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys. 4 (2002) 1209 [hep-th/0002240] [INSPIRE].

    MathSciNet  Google Scholar 

  23. P.S. Aspinwall, B.R. Greene and D.R. Morrison, Calabi-Yau moduli space, mirror manifolds and space-time topology change in string theory, Nucl. Phys. B 416 (1994) 414 [hep-th/9309097] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. V. Bouchard, Lectures on complex geometry, Calabi-Yau manifolds and toric geometry, hep-th/0702063 [INSPIRE].

  25. K. Hori et al., Mirror symmetry, AMS (2003).

  26. W. Fulton, Introduction to Toric Varieties, Princeton University Press, Princeton (1993).

    MATH  Google Scholar 

  27. D. A. Cox, J. B. Little and H. K. Schenck, Toric Varieties, AMS (2011).

  28. P. Candelas, A. Dale, C. Lütken and R. Schimmrigk, Complete Intersection Calabi-Yau Manifolds, Nucl. Phys. B 298 (1988) 493 [INSPIRE].

    Article  ADS  Google Scholar 

  29. P. Candelas, C. Lütken and R. Schimmrigk, Complete Intersection Calabi-Yau Manifolds. 2. Three Generation Manifolds, Nucl. Phys. B 306 (1988) 113 [INSPIRE].

    Article  ADS  Google Scholar 

  30. P. Candelas and R. Davies, New Calabi-Yau Manifolds with Small Hodge Numbers, Fortsch. Phys. 58 (2010) 383 [arXiv:0809.4681] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. D.A. Cox, The Homogeneous coordinate ring of a toric variety, revised version, alg-geom/9210008 [INSPIRE].

  32. J. Distler, Notes on (0, 2) superconformal field theories, hep-th/9502012 [INSPIRE].

  33. E. Witten, Symmetry Breaking Patterns in Superstring Models, Nucl. Phys. B 258 (1985) 75 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. E. Witten, New Issues in Manifolds of SU(3) Holonomy, Nucl. Phys. B 268 (1986) 79 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. M. Kreuzer, J. McOrist, I.V. Melnikov and M.R. Plesser, (0, 2) Deformations of Linear σ-models, JHEP 07 (2011) 044 [arXiv:1001.2104] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. R. Davies, The Expanding Zoo of Calabi-Yau Threefolds, Adv. High Energy Phys. 2011 (2011) 901898 [arXiv:1103.3156] [INSPIRE].

    Google Scholar 

  37. S.T. Yau, Compact three-dimensional Kähler manifolds with zero Ricci curvature, in proceedings of Symposium on Anomalies, Geometry, Topology, Argonne/Chicago (1985) 395.

  38. P. Candelas, X. de la Ossa, Y.-H. He and B. Szendroi, Triadophilia: A Special Corner in the Landscape, Adv. Theor. Math. Phys. 12 (2008) 2 [arXiv:0706.3134] [INSPIRE].

    Google Scholar 

  39. L.B. Anderson, Y.-H. He and A. Lukas, Heterotic Compactification, An Algorithmic Approach, JHEP 07 (2007) 049 [hep-th/0702210] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. L.B. Anderson, Heterotic and M-theory Compactifications for String Phenomenology, arXiv:0808.3621 [INSPIRE].

  41. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Springer (1977).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rhys Davies.

Additional information

ArXiv ePrint: 1112.1097

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, V., Candelas, P., Davies, R. et al. The MSSM spectrum from (0,2)-deformations of the heterotic standard embedding. J. High Energ. Phys. 2012, 127 (2012). https://doi.org/10.1007/JHEP05(2012)127

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2012)127

Keywords

Navigation