Abstract
We construct supersymmetric compactifications of E 8×E 8 heterotic string theory which realise exactly the massless spectrum of the Minimal Supersymmetric Standard Model (MSSM) at low energies. The starting point is the standard embedding on a Calabi-Yau threefold which has Hodge numbers (h 1,1, h 2,1) = (1, 4) and fundamental group \( {\mathbb{Z}_{{12}}} \), which gives an E 6 grand unified theory with three net chiral generations. The gauge sym- metry is then broken to that of the standard model by a combination of discrete Wilson lines and continuous deformation of the gauge bundle. On eight distinct branches of the moduli space, we find stable bundles with appropriate cohomology groups to give exactly the massless spectrum of the MSSM.
Similar content being viewed by others
References
P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum Configurations for Superstrings, Nucl. Phys. B 258 (1985) 46 [INSPIRE].
B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A Three Generation Superstring Model. 2. Symmetry Breaking and the Low-Energy Theory, Nucl. Phys. B 292 (1987) 606 [INSPIRE].
S.K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, P. Lond. Math. Soc. 50 (1985) 1.
K. Uhlenbeck and S. T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Commun. Pur. Appl. Math. 39 (1986) 257.
V. Braun, Y.-H. He and B.A. Ovrut, Stability of the minimal heterotic standard model bundle, JHEP 06 (2006) 032 [hep-th/0602073] [INSPIRE].
L.B. Anderson, Y.-H. He and A. Lukas, Monad Bundles in Heterotic String Compactifications, JHEP 07 (2008) 104 [arXiv:0805.2875] [INSPIRE].
L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The Edge Of Supersymmetry: Stability Walls in Heterotic Theory, Phys. Lett. B 677 (2009) 190 [arXiv:0903.5088] [INSPIRE].
L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stability Walls in Heterotic Theories, JHEP 09 (2009) 026 [arXiv:0905.1748] [INSPIRE].
V. Bouchard and R. Donagi, An SU(5) heterotic standard model, Phys. Lett. B 633 (2006) 783 [hep-th/0512149] [INSPIRE].
L.B. Anderson, J. Gray, A. Lukas and E. Palti, Two Hundred Heterotic Standard Models on Smooth Calabi-Yau Threefolds, Phys. Rev. D 84 (2011) 106005 [arXiv:1106.4804] [INSPIRE].
V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, The Exact MSSM spectrum from string theory, JHEP 05 (2006) 043 [hep-th/0512177] [INSPIRE].
V. Bouchard and R. Donagi, On heterotic model constraints, JHEP 08 (2008) 060 [arXiv:0804.2096] [INSPIRE].
L.B. Anderson, J. Gray, Y.-H. He and A. Lukas, Exploring Positive Monad Bundles And A New Heterotic Standard Model, JHEP 02 (2010) 054 [arXiv:0911.1569] [INSPIRE].
J. McOrist and I.V. Melnikov, Old issues and linear σ-models, arXiv:1103.1322 [INSPIRE].
V. Braun, P. Candelas and R. Davies, A Three-Generation Calabi-Yau Manifold with Small Hodge Numbers, Fortsch. Phys. 58 (2010) 467 [arXiv:0910.5464] [INSPIRE].
V. Braun, On Free Quotients of Complete Intersection Calabi-Yau Manifolds, JHEP 04 (2011) 005 [arXiv:1003.3235] [INSPIRE].
J. Li and S.-T. Yau, The Existence of supersymmetric string theory with torsion, hep-th/0411136 [INSPIRE].
R. Donagi, R. Reinbacher and S.-T. Yau, Yukawa couplings on quintic threefolds, hep-th/0605203 [INSPIRE].
B. McInnes, Group theoretic aspects of the Hosotani mechanism, J. Phys. A 22 (1989) 2309 [INSPIRE].
R. Donagi, B.A. Ovrut, T. Pantev and R. Reinbacher, SU(4) instantons on Calabi-Yau threefolds with Z(2) × Z(2) fundamental group, JHEP 01 (2004) 022 [hep-th/0307273] [INSPIRE].
V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom. 3 (1994) 493 [alg-geom/9310003] [INSPIRE].
M. Kreuzer and H. Skarke, Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys. 4 (2002) 1209 [hep-th/0002240] [INSPIRE].
P.S. Aspinwall, B.R. Greene and D.R. Morrison, Calabi-Yau moduli space, mirror manifolds and space-time topology change in string theory, Nucl. Phys. B 416 (1994) 414 [hep-th/9309097] [INSPIRE].
V. Bouchard, Lectures on complex geometry, Calabi-Yau manifolds and toric geometry, hep-th/0702063 [INSPIRE].
K. Hori et al., Mirror symmetry, AMS (2003).
W. Fulton, Introduction to Toric Varieties, Princeton University Press, Princeton (1993).
D. A. Cox, J. B. Little and H. K. Schenck, Toric Varieties, AMS (2011).
P. Candelas, A. Dale, C. Lütken and R. Schimmrigk, Complete Intersection Calabi-Yau Manifolds, Nucl. Phys. B 298 (1988) 493 [INSPIRE].
P. Candelas, C. Lütken and R. Schimmrigk, Complete Intersection Calabi-Yau Manifolds. 2. Three Generation Manifolds, Nucl. Phys. B 306 (1988) 113 [INSPIRE].
P. Candelas and R. Davies, New Calabi-Yau Manifolds with Small Hodge Numbers, Fortsch. Phys. 58 (2010) 383 [arXiv:0809.4681] [INSPIRE].
D.A. Cox, The Homogeneous coordinate ring of a toric variety, revised version, alg-geom/9210008 [INSPIRE].
J. Distler, Notes on (0, 2) superconformal field theories, hep-th/9502012 [INSPIRE].
E. Witten, Symmetry Breaking Patterns in Superstring Models, Nucl. Phys. B 258 (1985) 75 [INSPIRE].
E. Witten, New Issues in Manifolds of SU(3) Holonomy, Nucl. Phys. B 268 (1986) 79 [INSPIRE].
M. Kreuzer, J. McOrist, I.V. Melnikov and M.R. Plesser, (0, 2) Deformations of Linear σ-models, JHEP 07 (2011) 044 [arXiv:1001.2104] [INSPIRE].
R. Davies, The Expanding Zoo of Calabi-Yau Threefolds, Adv. High Energy Phys. 2011 (2011) 901898 [arXiv:1103.3156] [INSPIRE].
S.T. Yau, Compact three-dimensional Kähler manifolds with zero Ricci curvature, in proceedings of Symposium on Anomalies, Geometry, Topology, Argonne/Chicago (1985) 395.
P. Candelas, X. de la Ossa, Y.-H. He and B. Szendroi, Triadophilia: A Special Corner in the Landscape, Adv. Theor. Math. Phys. 12 (2008) 2 [arXiv:0706.3134] [INSPIRE].
L.B. Anderson, Y.-H. He and A. Lukas, Heterotic Compactification, An Algorithmic Approach, JHEP 07 (2007) 049 [hep-th/0702210] [INSPIRE].
L.B. Anderson, Heterotic and M-theory Compactifications for String Phenomenology, arXiv:0808.3621 [INSPIRE].
R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Springer (1977).
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1112.1097
Rights and permissions
About this article
Cite this article
Braun, V., Candelas, P., Davies, R. et al. The MSSM spectrum from (0,2)-deformations of the heterotic standard embedding. J. High Energ. Phys. 2012, 127 (2012). https://doi.org/10.1007/JHEP05(2012)127
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2012)127