Abstract
A complete analysis of all heterotic Calabi-Yau compactifications based on positive two-term monad bundles over favourable complete intersection Calabi-Yau threefolds is performed. We show that the original data set of about 7000 models contains 91 standard-like models which we describe in detail. A closer analysis of Wilson-line breaking for these models reveals that none of them gives rise to precisely the matter field content of the standard model. We conclude that the entire set of positive two-term monads on complete intersection Calabi-Yau manifolds is ruled out on phenomenological grounds. We also take a first step in analyzing the larger class of non-positive monads. In particular, we construct a supersymmetric heterotic standard model within this class. This model has the standard model gauge group and an additional U(1)B−L symmetry, precisely three families of quarks and leptons, one pair of Higgs doublets and no anti-families or exotics of any kind.
Similar content being viewed by others
References
P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys. B 258 (1985) 46 [SPIRES].
E. Witten, New issues in manifolds of SU(3) holonomy, Nucl. Phys. B 268 (1986) 79 [SPIRES].
M.B. Green, J.H. Schwarz and E. Witten, Superstring theory, volume 2, Cambridge University Press, Cambridge U.K. (1987).
A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, The universe as a domain wall, Phys. Rev. D 59 (1999) 086001 [hep-th/9803235] [SPIRES].
L.B. Anderson, Y.-H. He and A. Lukas, Heterotic compactification, an algorithmic approach, JHEP 07 (2007) 049 [hep-th/0702210] [SPIRES].
L.B. Anderson, Y.-H. He and A. Lukas, Monad bundles in heterotic string compactifications, JHEP 07 (2008) 104 [arXiv:0805.2875] [SPIRES].
L.B. Anderson, Heterotic and M-theory Compactifications for String Phenomenology, arXiv:0808.3621 [SPIRES].
R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, The particle spectrum of heterotic compactifications, JHEP 12 (2004) 054 [hep-th/0405014] [SPIRES].
Y.-H. He, GUT particle spectrum from heterotic compactification, Mod. Phys. Lett. A 20 (2005) 1483 [SPIRES].
R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, Moduli dependent spectra of heterotic compactifications, Phys. Lett. B 598 (2004) 279 [hep-th/0403291] [SPIRES].
V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A heterotic standard model, Phys. Lett. B 618 (2005) 252 [hep-th/0501070] [SPIRES].
V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, A standard model from the E 8 × E 8 heterotic superstring, JHEP 06 (2005) 039 [hep-th/0502155] [SPIRES].
V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, The exact MSSM spectrum from string theory, JHEP 05 (2006) 043 [hep-th/0512177] [SPIRES].
V. Bouchard and R. Donagi, An SU(5) heterotic standard model, Phys. Lett. B 633 (2006) 783 [hep-th/0512149] [SPIRES].
R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, Higgs doublets, split multiplets and heterotic SU(3) C × SU(2) L × U(1) Y spectra, Phys. Lett. B 618 (2005) 259 [hep-th/0409291] [SPIRES].
R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, The spectra of heterotic standard model vacua, JHEP 06 (2005) 070 [hep-th/0411156] [SPIRES].
R. Blumenhagen, S. Moster and T. Weigand, Heterotic GUT and standard model vacua from simply connected Calabi-Yau manifolds, Nucl. Phys. B 751 (2006) 186 [hep-th/0603015] [SPIRES].
R. Blumenhagen, S. Moster, R. Reinbacher and T. Weigand, Massless spectra of three generation U(N) heterotic string vacua, JHEP 05 (2007) 041 [hep-th/0612039] [SPIRES].
V. Bouchard, M. Cvetič and R. Donagi, Tri-linear couplings in an heterotic minimal supersymmetric standard model, Nucl. Phys. B 745 (2006) 62 [hep-th/0602096] [SPIRES].
A. Bak, V. Bouchard and R. Donagi, Exploring a new peak in the heterotic landscape, arXiv:0811.1242 [SPIRES].
L.B. Anderson, J. Gray, D. Grayson, Y.-H. He and A. Lukas, Yukawa couplings in heterotic compactification, arXiv:0904.2186 [SPIRES].
Y.-H. He, S.-J. Lee and A. Lukas, Heterotic models from vector bundles on toric Calabi-Yau manifolds, arXiv:0911.0865 [SPIRES].
O. Lebedev, H.P. Nilles, S. Ramos-Sanchez, M. Ratz and P.K.S. Vaudrevange, Heterotic mini-landscape (II): completing the search for MSSM vacua in a Z 6 orbifold, Phys. Lett. B 668 (2008) 331 [arXiv:0807.4384] [SPIRES].
O. Lebedev et al., The heterotic road to the MSSM with R parity, Phys. Rev. D 77 (2008) 046013 [arXiv:0708.2691] [SPIRES].
O. Lebedev et al., Low energy supersymmetry from the heterotic landscape, Phys. Rev. Lett. 98 (2007) 181602 [hep-th/0611203] [SPIRES].
O. Lebedev et al., A mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. Lett. B 645 (2007) 88 [hep-th/0611095] [SPIRES].
T. Kobayashi, S. Raby and R.-J. Zhang, Constructing 5D orbifold grand unified theories from heterotic strings, Phys. Lett. B 593 (2004) 262 [hep-ph/0403065] [SPIRES].
T. Kobayashi, S. Raby and R.-J. Zhang, Searching for realistic 4d string models with a Pati-Salam symmetry: orbifold grand unified theories from heterotic string compactification on a Z(6) orbifold, Nucl. Phys. B 704 (2005) 3.
W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string, Phys. Rev. Lett. 96 (2006) 121602.
W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Supersymmetric standard model from the heterotic string. II, Nucl. Phys. B 785 (2007) 149.
S. Förste, H.P. Nilles, P.K.S. Vaudrevange and A. Wingerter, Heterotic brane world, Phys. Rev. D 70 (2004) 106008.
T. Kobayashi, H.P. Nilles, F. Ploger, S. Raby and M. Ratz, Stringy origin of non-abelian discrete flavor symmetries, Nucl. Phys. B 768 (2007) 135.
P. Candelas, A.M. Dale, C.A. Lütken and R. Schimmrigk, Complete intersection Calabi-Yau manifolds, Nucl. Phys. B 298 (1988) 493.
P. Candelas, C.A. Lütken and R. Schimmrigk, Complete intersection Calabi-Yau manifolds. 2. Three generation manifolds, Nucl. Phys. B 306 (1988) 113.
P.S. Green, T. Hubsch and C.A. Lütken, All Hodge numbers of all complete intersection Calabi-Yau manifolds, Class. Quant. Grav. 6 (1989) 105.
A.-m. He and P. Candelas, On the number of complete intersection Calabi-Yau manifolds, Commun. Math. Phys. 135 (1990) 193.
M. Gagnon and Q. Ho-Kim, An exhaustive list of complete intersection Calabi-Yau manifolds, Mod. Phys. Lett. A 9 (1994) 2235.
P. Candelas and R. Davies, New Calabi-Yau Manifolds with small Hodge numbers, arXiv:0809.4681 [SPIRES].
T. Hubsch, Calabi-Yau Manifolds — A bestiary for physicists, World Scientific, Singapore (1994).
J. Distler and B.R. Greene, Aspects of (2, 0) string compactifications, Nucl. Phys. B 304 (1988) 1.
S. Kachru, Some three generation (0, 2) Calabi-Yau models, Phys. Lett. B 349 (1995) 76.
M.R. Douglas and C.-g. Zhou, Chirality change in string theory, JHEP 06 (2004) 014.
L.B. Anderson, Y.H. He and A. Lukas, Algorithmic proofs of vector bundle stability, to appear.
L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stability walls in heterotic theories, JHEP 09 (2009) 026.
L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The edge of supersymmetry: stability walls in heterotic theory, Phys. Lett. B 677 (2009) 190.
L.B. Anderson, J. Gray, Y.H. He and A. Lukas, Compactifying on complete intersections, to appear.
G. Horrocks and D. Mumford, A rank 2 vector bundle on \( {\mathbb{P}^4} \) with 15000 symmetries, Topology 12 (1973) 63.
A. Beilinson, Coherent sheaves on \( {\mathbb{P}^n} \) and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978) 68.
M. Maruyama, Moduli of stable sheaves, II, J. Math. Kyoto Univ. 18 (1978) 557.
C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, Birkhauser Verlag, Germany (1988).
W. Fulton and R. Lazarsfeld, On the connectedness of degeneracy loci and special divisors, Acta Math. 146 (1981) 271.
K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian Yang-Mills connections in stable bundles, Comm. Pure App. Math. 39 (1986) 257.
K. Uhlenbeck and S.-T. Yau, A note on our previous paper: on the existence of hermitian Yang-Mills connections in stable vector bundles, Comm. Pure App. Math. 42 (1986) 703.
S. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. 3 (1985) 1.
M.C. Brambilla, Semistability of certain bundles on a quintic Calabi-Yau threefold, math.AG/0509599.
D. Mumford, J. Fogarty and F. Kirwan, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete volume 2, Springer-Verlag, Berlin Germany (1994).
F. Knop, H. Kraft, D. Luna and T. Vust, Local properties of algebraic group actions, in Algebraische Transformationsgruppen und Invariantentheorie, DMV Seminar 13, Birkhäuser, Basel Switzerland (1989).
R. Donagi, B.A. Ovrut, T. Pantev and R. Reinbacher, SU(4) instantons on Calabi-Yau threefolds with Z 2 × Z 2 fundamental group, JHEP 01 (2004) 022.
W. Fulton and J. Harris, Representation theory: a first course, Springer, New York U.S.A. (1991).
R. Hartshorne, Algebraic geometry, springer, Graduate Text in Mathematics volume 52, Springer-Verlag, Germany (1977).
P. Griffith and J. Harris, Principles of algebraic geometry, Wiley Interscience, U.S.A. (1978).
J.D. Breit, B.A. Ovrut and G.C. Segre, E 6 symmetry breaking in the superstring theory, Phys. Lett. B 158 (1985) 33.
V. Braun, Three generations on the quintic quotient, arXiv:0909.5682 [SPIRES].
P. Candelas, X. de la Ossa, Y.-H. He and B. Szendroi, Triadophilia: a special corner in the landscape, Adv. Theor. Math. Phys. 12 (2008) 2.
V. Braun, B.A. Ovrut, T. Pantev and R. Reinbacher, Elliptic Calabi-Yau threefolds with Z(3) × Z(3) Wilson lines, JHEP 12 (2004) 062.
V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, Vector bundle extensions, sheaf cohomology and the heterotic standard model, Adv. Theor. Math. Phys. 10 (2006) 4.
M. Ambroso and B. Ovrut, The B-L/electroweak hierarchy in heterotic string and M-theory, JHEP 10 (2009) 011.
M. Ambroso and B.A. Ovrut, The B-L/electroweak hierarchy in smooth heterotic compactifications, arXiv:0910.1129 [SPIRES].
V. Braun, P. Candelas and R. Davies, A three-generation Calabi-Yau manifold with small Hodge numbers, arXiv:0910.5464 [SPIRES].
V. Braun, M. Kreuzer, B.A. Ovrut and E. Scheidegger, Worldsheet instantons and torsion curves. Part A: direct computation, JHEP 10 (2007) 022.
G.-M. Greuel, G. Pfister and H. Schönemann, Singular: a computer algebra system for polynomial computations, Centre for Computer Algebra, University of Kaiserslautern (2001), available at http://www.singular.uni-kl.de/.
D.G. Grayson and M.E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/.
D.J.S. Robinson, A course in the theory of groups, Graduate Texts in Mathematics, Springer, New York U.S.A. (1995).
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 0911.1569
Rights and permissions
About this article
Cite this article
Anderson, L.B., Gray, J., He, YH. et al. Exploring positive monad bundles and a new heterotic standard model. J. High Energ. Phys. 2010, 54 (2010). https://doi.org/10.1007/JHEP02(2010)054
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2010)054