Abstract
We dimensionally reduce the ten dimensional heterotic supergravity action on spacetimes of the form \( \mathcal{M} \)(1, 2) x Y, where \( \mathcal{M} \)(1, 2) is three dimensional maximally symmetric Anti de Sitter or Minkowski space, and Y is a compact seven dimensional manifold with G2 structure. In doing so, we derive the real superpotential functional of the corresponding three dimensional \( \mathcal{N} \) = 1 theory. We confirm that extrema of this functional correspond to supersymmetric heterotic compacti:fications on manifolds of G2 structure in the large volume, weak coupling limit to first order in a'. We make some comments on the role of the superpotential functional with respect to the coupled moduli problem of instanton bundles over G2 manifolds.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
R.P. Thomas, Gauge theory on Calabi- Yau manifolds, Ph.D. Thesis, University of Oxford, Oxford U.K. (1997).
S. Donaldson and R.P. Thomas, Gauge theory in higher dimensions, in proceedings of the Conference on Geometric Issues in Foundations of Science in honor of Sir Roger Penrose's 65th Birthday, Oxford, U.K., 25-29 June 1996, S.A. Huggett, L.J. Mason, K.P. Tod and S.T. Tsou eds., Oxford University Press, Oxford U.K. (1998), p. 31 [INSPIRE].
R.P. Thomas, A Holomorphic Casson invariant for Calabi- Yau three folds and bundles on K3 fibrations, J. Diff. Geom.54 (2000) 367 [math.AG/9806111] [INSPIRE].
S. Donaldson and E. Segal, Gauge Theory in higher dimensions, II, arXiv: 0902.3239 [INSPIRE].
D. Joyce, Conjectures on counting associative 3-folds in G2-manifolds, arXiv:1610 . 09836 [INSPIRE].
L.B. Anderson, J. Gray and E. Sharpe, Algebroids, Heterotic Moduli Spaces and the Strominger System, JHEP07 (2014) 037 [arXiv:1402 .1532] [INSPIRE].
X. de la Ossa and E.E. Svanes, Connections, Field Redefinitions and Heterotic Supergravity, JHEP12 (2014) 008 [arXiv:1409.3347] [INSPIRE].
M. Garcia-Fernandez, R. Rubio and C. Tipler, Infinitesimal moduli for the Strominger system and Killing spinors in generalized geometry, Math. Ann.369 (2017) 539 [arXiv: 1503 . 07562] [INSPIRE].
P. Candelas, X. de la Ossa and J. McOrist, A Metric for Heterotic Moduli, Commun. Math. Phys.356 (2017) 567 [arXiv: 1605 . 05256] [INSPIRE].
M. Garcia-Fernandez, R. Rubio, C. Shahbazi and C. Tipler, Ca no nical metrics on holomorphic Courant algebroids, arXiv: 1803 . 01873 [INSPIRE].
A. Ashmore, X. De La Ossa, R. Minasian, C. Strickland-Constable and E.E. Svanes, Finite deformations from a heterotic superpotential: holomorphic Chern-Simons and an L00algebra , JHEP10 (2018) 179 [arXiv:1806.08367] [INSPIRE].
M. Garcia-Fernandez, R. Rubio and C. Tipler, Holomorphic string algebroids, arXiv : 1807 . 10329 [INSPIRE].
P. Candelas, X. De La Ossa, J. McOrist and R. Sisca, The Universal Geometry of Heterotic Vacua, JHEP02 (2019) 038 [arXiv: 1810 . 00879] [INSPIRE].
X. de la Ossa, M. Larfors and E.E. Svanes, Infinitesimal moduli of G2holonomy manifolds with instanton bundl es, JHE P11 (2016) 016 [arXiv:1607 . 03473] [INSPIRE].
X. de la Ossa, M. Larfors and E.E. Svanes, The Infinitesimal Moduli Space of Heteroti c G2Systems, Commun. Math. Phys.360 (2018) 727 [arXiv:1704 .08717] [INSPIRE].
A. Strominger, Superstrings with Torsion, Nucl. Phys.B 274 (1986) 253 [INSPIRE].
C.M. Hull, Compactifications of the Heterotic Superstring, Phys. Lett.B 178 (1986) 357 [INSPIRE].
P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum Configurations for Superstrings, Nucl. Phys.B 258 (1985) 46 [INSPIRE].
L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stability Walls in Heterotic Theories, JHEP09 (2009) 026 [arXiv:0905.1748] [INSPIRE].
L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing All Geometric Moduli in Heterotic Calabi- Yau Vacua, Phys. Rev.D 83 (2011) 106011 [arXiv:1102. 0011] [INSPIRE].
L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing the Complex Structure in Heterotic Calabi- Yau Vacua, JHEP02 (2011) 088 [arXiv: 1010. 0255] [INSPIRE].
L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The Atiyah Class and Complex Structure Stabilization in Heterotic Calabi-Yau Compactifications, JHEP10 (2011) 032 [arXiv: 1107.5076] [INSPIRE].
M. Kreuzer, J. McOrist, LV. Melnikov and M.R. Plesser, (0, 2) Deformations of Linear a-models, JHEP07 (2011) 044 [arXiv:1001. 2104] [INSPIRE].
LV. Melnikov and E. Sharpe, On marginal deformations of (0, 2) non-linear a-models, Phys. Lett.B 705 (2011) 529 [arXiv: 1110 .1886] [INSPIRE].
M. Bertolini, LV. Melnikov and M.R. Plesser, Massless spectrum for hybrid CFTs, Proc. Symp. Pure Math.88 (2014) 221 [arXiv: 1402 .1751] [INSPIRE].
M. Bertolini and M.R. Plesser, (0, 2) hybrid models, JHEP09 (2018) 067 [arXiv: 1712 .04976] [INSPIRE].
M. Gunaydin and H. Nicolai, Seven-dimensional octonionic Yang-Mills instanton and its extension to an heterotic string soliton, Phys. Lett.B 351 (1995) 169 [hep-th/9502009] [INSPIRE].
T. Friedrich and S. Ivanov, Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math.6 (2002) 303 [math.DG/0102142] [INSPIRE].
T. Friedrich and S. Ivanov, Killing spinor equations in dimension 7 and geometry of integrable G2manifolds, J. Geom. Phys.48 (2003) 1 [math/0112201] [INSPIRE].
J.P. Gauntlett, D. Martelli and D. Waldram, Superstrings with intrinsic torsion, Phys. Rev.D 69 (2004) 086002 [hep-th/0302158] [INSPIRE].
P. Ivanov and S. Ivanov, SU(3)-Instantons and G2, Spin(7)-Heterotic String Solitons, Commun. Math. Phys.259 (2005) 79 [math/0312094] [INSPIRE].
A. Lukas and C. Matti, G-structures and Domain Walls in Heterotic Theories, JHEP01 (2011) 151 [arXiv:1005.5302] [INSPIRE].
J. Gray, M. Larfors and D. Lust, Heterotic domain wall solutions and SU(3) structure manifolds, JHEP08 (2012) 099 [arXiv: 1205. 6208] [INSPIRE].
X. de la Ossa, M. Larfors and E.E. Svanes, Exploring SU(3) structure moduli spaces with integrable G2structures, Adv. Theor. Math. Phys.19 (2015) 837 [arXiv:1409. 7539] [INSPIRE].
X. de la Ossa, M. Larfors and E.E. Svanes, Restrictions of Heterotic G2Structures and Instanton Connections, in proceedings of the Nigel Hitchin’s 70th Birthday Conference (Hitchin 70), Madrid, Spain, 5-16 September 2016, arXiv:1709.06974 [INSPIRE].
A. Clarke, M. Garcia-Fernandez and C. Tipler, Moduli of G2structures and the Strominger system in dimension 7, arXiv:1607.01219 [INSPIRE].
S. Gurrieri, A. Lukas and A. Micu, Heterotic on half-fiat, Phys. Rev.D 70 (2004) 126009 [hep-th/0408121] [INSPIRE].
X. de la Ossa, E. Hardy and E.E. Svanes, The Heterotic Superpotential and Moduli, JHEP01 (2016) 049 [arXiv:1509.08724] [INSPIRE].
J. McOrist, On the Effective Field Theory of Heterotic Vacua, Lett. Math. Phys.108 (2018) 1031 [arXiv:1606 .05221] [INSPIRE].
R.L. Bryant, Metrics with exceptional holonomy, Ann. Math.126 (1987) 525.
E. Bonan, Surles varietes riemanniennes à groupe d'holonomie G2ou Spin(7), Compt. Rendus Acad. Sci.262 (1966) 127.
M. Fernandez and A. Gray, Riemannian manifolds with structure group G2, Annali Mat. Pura Appl.32 (1982) 19.
N.J. Hitchin, The geometry of three-forms in six and seven dimensions, J. Diff. Geom.55 (2000) 547 [math.DG/0010054] [INSPIRE].
D.D. Joyce, Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University Press, Oxford U.K. (2000).
R.L. Bryant, Some remarks on G2-structures, math .DG/0305124.
J.P. Gauntlett, N. Kim, D. Martelli and D. Waldram, Five-bra nes wrapped on SLAG three cycles and related geometry, JHEP11 (2001) 018 [hep-th/0110034] [INSPIRE].
M. Fernandez and L. Ugarte, Dolbeault cohomology for G2-manifolds, Geom. Dedicata70 (1998) 57.
M. Green, J. Schwarz and E. Witten, Superstring Theory, Cambridge University Press, Cambridge U.K. (1987).
E.A. Bergshoeff and M. de Roo, The Quartic Effective Action of the Heterotic String and Supersymmetry, Nucl. Phys.B 328 (1989) 439 [INSPIRE].
J. Polchinski, String theory. Volume 2: Superstring theory and beyond, Cambridge University Press, Cambridge U.K. (2007).
S. Karigiannis and N.C. Leung, Hodge Theory for G2-manifolds: Intermediate Jacobia ns and Abel-Jacobi maps, Proc. London Math. Soc.99 (2009) 297 [arXiv:0709 . 2987].
B. de Carlos, S. Gurrieri, A. Lukas and A. Micu, Moduli stabilisation in heterotic string compa ctifications, JHEP03 (2006) 005 [hep-th/0507173] [INSPIRE].
S. Gurrieri, A. Lukas and A. Micu, Heterotic String Compactifications on Half-fiat Manifolds. II, JHEP12 (2007) 081 [arXiv :0709 .1932] [INSPIRE].
M. Klaput, A. Lukas and C. Matti, Bundles over Nearly-Kahler Homogeneous Spaces in Heterotic String Theory, JHEP09 (2011) 100 [arXiv:1107 .3573] [INSPIRE].
M. Klaput, A. Lukas and E.E. Svanes, Heterotic Calabi- Yau Compactifications with Flux, JHEP09 (2013) 034 [arXiv:1305 . 0594] [INSPIRE].
M. Klaput, A. Lukas, C. Matti and E.E. Svanes, Moduli Stabilising in Heterotic Nearly Kahler Compactifications, JHEP 01 (2013) 015 [arXiv: 1210 .5933] [INSPIRE].
S.J. Gates Jr. and H. Nishino, Remarks on the N = 2 supersymmetric Chern-Simons theories, Phys. Lett.B 281 (1992) 72 [INSPIRE].
H. Nishino and S.J. Gates Jr., Chern-Simons theories with supersymmetries in three-dimensions, Int. J. Mod. Phys.A 8 (1993) 3371 [INSPIRE].
H. Nishino, Does heterotic string generate Chern-Simons action in three-dimensions?, Mod. Phys. Lett.A 7 (1992) 1805 [INSPIRE].
J. de Boer, P. de Medeiros, S. El-Showk and A. Sinkovics, Open G2strings, JHEP 02 (2008) 012 [hep-th/0611080] [INSPIRE].
S. Cecotti, Supersymmetric Field Theories: Geometric Structures and Dualities, Cambridge University Press, Cambridge U.K. (2015).
H. Kunitomo and M. Ohta, Supersymmetric AdS3solutions in Heterotic Supergravity, Frog. Theor. Phys.122 (2009) 631 [arXiv:0902.0655] [INSPIRE].
U. Gran, GAMMA: A Mathematica package for performing gamma matrix algebra and Fierz transformations in arbitrary dimensions, hep-th/0105086 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1904.01027
Rights and permissions
This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.
About this article
Cite this article
de Ia Ossa, X., Larfors, M., Magill, M. et al. Superpotential of three dimensional \( \mathcal{N} \) = 1 heterotic supergravity. J. High Energ. Phys. 2020, 195 (2020). https://doi.org/10.1007/JHEP01(2020)195
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2020)195