Abstract
Multi-atlas techniques are commonplace in medical image segmentation due to their high performance and ease of implementation. Locally weighting the contributions from the different atlases in the label fusion process can improve the quality of the segmentation. However, how to define these weights in a principled way in inter-modality scenarios remains an open problem. Here we propose a label fusion scheme that does not require voxel intensity consistency between the atlases and the target image to segment. The method is based on a generative model of image data in which each intensity in the atlases has an associated conditional distribution of corresponding intensities in the target. The segmentation is computed using variational expectation maximization (VEM) in a Bayesian framework. The method was evaluated with a dataset of eight proton density weighted brain MRI scans with nine labeled structures of interest. The results show that the algorithm outperforms majority voting and a recently published inter-modality label fusion algorithm.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Heckemann, R., Hajnal, J., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33(1), 115–126 (2006)
Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M., van Ginneken, B.: Multi-atlas-based segmentation with local decision fusion-application to cardiac and aortic segmentation in CT scans. IEEE Trans. Med. Im. 28(7), 1000–1010 (2009)
Sabuncu, M., Yeo, B., Van Leemput, K., Fischl, B., Golland, P.: A generative model for image segmentation based on label fusion. IEEE Trans. Med. Im. 29, 1714–1729 (2010)
Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Im. 16(2), 187–198 (1997)
Yushkevich, P.A., Wang, H., Pluta, J., Das, S.R., Craige, C., Avants, B.B., Weiner, M.W., Mueller, S.: Nearly automatic segmentation of hippocampal subfields in in vivo focal T2-weighted MRI. NeuroImage 53(4), 1208–1224 (2010)
Iglesias, J., Sabuncu, M., Van Leemput, K.: A generative model for multi-atlas segmentation across modalities. In: 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 888–891 (2012)
Iglesias, J.E., Sabuncu, M.R., Van Leemput, K.: A generative model for probabilistic label fusion of multimodal data. In: Yap, P.-T., Liu, T., Shen, D., Westin, C.-F., Shen, L. (eds.) MBIA 2012. LNCS, vol. 7509, pp. 115–133. Springer, Heidelberg (2012)
Pohl, K.M., Fisher, J., Shenton, M., McCarley, R.W., Grimson, W.E.L., Kikinis, R., Wells, W.M.: Logarithm odds maps for shape representation. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 955–963. Springer, Heidelberg (2006)
Caviness Jr., V., Filipek, P., Kennedy, D.: Magnetic resonance technology in human brain science: blueprint for a program based upon morphometry. Brain Dev. 11(1), 1–13 (1989)
Fischl, B., Salat, D., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, A.: Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002)
Klein, S., Staring, M., Murphy, K., Viergever, M., Pluim, J.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Im. 29(1), 196–205 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Iglesias, J.E., Sabuncu, M.R., Van Leemput, K. (2013). A Probabilistic, Non-parametric Framework for Inter-modality Label Fusion. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. MICCAI 2013. Lecture Notes in Computer Science, vol 8151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40760-4_72
Download citation
DOI: https://doi.org/10.1007/978-3-642-40760-4_72
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40759-8
Online ISBN: 978-3-642-40760-4
eBook Packages: Computer ScienceComputer Science (R0)