[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Generative Model for Probabilistic Label Fusion of Multimodal Data

  • Conference paper
Multimodal Brain Image Analysis (MBIA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7509))

Included in the following conference series:

Abstract

The maturity of registration methods, in combination with the increasing processing power of computers, has made multi-atlas segmentation methods practical. The problem of merging the deformed label maps from the atlases is known as label fusion. Even though label fusion has been well studied for intramodality scenarios, it remains relatively unexplored when the nature of the target data is multimodal or when its modality is different from that of the atlases. In this paper, we review the literature on label fusion methods and also present an extension of our previously published algorithm to the general case in which the target data are multimodal. The method is based on a generative model that exploits the consistency of voxel intensities within the target scan based on the current estimate of the segmentation. Using brain MRI scans acquired with a multiecho FLASH sequence, we compare the method with majority voting, statistical-atlas-based segmentation, the popular package FreeSurfer and an adaptive local multi-atlas segmentation method. The results show that our approach produces highly accurate segmentations (Dice 86.3% across 22 brain structures of interest), outperforming the competing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 32.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 41.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rohlfing, T., Brandt, R., Menzel, R., Russakoff, D., Maurer, C.: Quo vadis, atlas-based segmentation? Handbook of Biomedical Image Analysis, pp. 435–486 (2005)

    Google Scholar 

  2. Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23, S151–S160 (2004)

    Google Scholar 

  3. Ashburner, J., Friston, K.: Unified segmentation. Neuroimage 26, 839–851 (2005)

    Article  Google Scholar 

  4. Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Transactions on Medical Imaging 18(10), 897–908 (1999)

    Article  Google Scholar 

  5. Thomas Yeo, B., Sabuncu, M., Desikan, R., Fischl, B., Golland, P.: Effects of registration regularization and atlas sharpness on segmentation accuracy. Medical Image Analysis 12(5), 603–615 (2008)

    Article  Google Scholar 

  6. Heckemann, R., Hajnal, J., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33(1), 115–126 (2006)

    Article  Google Scholar 

  7. Rohlfing, T., Brandt, R., Menzel, R., Maurer, C.: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21(4), 1428–1442 (2004)

    Article  Google Scholar 

  8. Langerak, T., Van Der Heide, U., Kotte, A., Viergever, M., Van Vulpen, M., Pluim, J.: Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (simple). IEEE Transactions on Medical Imaging 29(12), 2000–2008 (2010)

    Article  Google Scholar 

  9. Klein, S., van der Heide, U., Lips, I., van Vulpen, M., Staring, M., Pluim, J.: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Medical Physics 35, 1407 (2008)

    Article  Google Scholar 

  10. Artaechevarria, X., Muñoz-Barrutia, A., Ortiz-de Solorzano, C.: Combination strategies in multi-atlas image segmentation: Application to brain MR data. IEEE Transactions on Medical Imaging 28(8), 1266–1277 (2009)

    Article  Google Scholar 

  11. Warfield, S., Zou, K., Wells, W.: Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE Transactions on Medical Imaging 23(7), 903–921 (2004)

    Article  Google Scholar 

  12. Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M., van Ginneken, B.: Multi-atlas-based segmentation with local decision fusion application to cardiac and aortic segmentation in ct scans. IEEE Transactions on Medical Imaging 28(7), 1000–1010 (2009)

    Article  Google Scholar 

  13. Sabuncu, M., Yeo, B., Van Leemput, K., Fischl, B., Golland, P.: A generative model for image segmentation based on label fusion. IEEE Transactions on Medical Imaging 29(10), 1714–1729 (2010)

    Article  Google Scholar 

  14. Coupé, P., Manjón, J., Fonov, V., Pruessner, J., Robles, M., Collins, D.: Nonlocal Patch-Based Label Fusion for Hippocampus Segmentation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 129–136. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Wang, H., Suh, J., Das, S., Pluta, J., Craige, C., Yushkevich, P.: Multi-atlas segmentation with joint label fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence (in press, 2012)

    Google Scholar 

  16. Cao, Y., Yuan, Y., Li, X., Turkbey, B., Choyke, P., Yan, P.: Segmenting Images by Combining Selected Atlases on Manifold. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 272–279. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Zhang, D., Wu, G., Jia, H., Shen, D.: Confidence-Guided Sequential Label Fusion for Multi-atlas Based Segmentation. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 643–650. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Nyul, L., Udupa, J., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Transactions on Medical Imaging 19(2), 143–150 (2000)

    Article  Google Scholar 

  19. Staring, M., van der Heide, U., Klein, S., Viergever, M., Pluim, J.: Registration of cervical MRI using multifeature mutual information. IEEE Transactions on Medical Imaging 28(9), 1412–1421 (2009)

    Article  Google Scholar 

  20. Sabuncu, M., Ramadge, P.: Using spanning graphs for efficient image registration. IEEE Transactions on Image Processing 17(5), 788–797 (2008)

    Article  MathSciNet  Google Scholar 

  21. Iglesias, J., Sabuncu, M., Van Leemput, K.: A generative model for multi-atlas segmentation across modalities. In: IEEE ISBI, pp. 888–891 (2012)

    Google Scholar 

  22. FreeSurfer: http://surfer.nmr.mgh.harvard.edu

  23. Pohl, K., Fisher, J., Shenton, M., McCarley, R., Grimson, W., Kikinis, R., Wells, W.: Logarithm Odds Maps for Shape Representation. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 955–963. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Petersen, K., Pedersen, M.: The matrix cookbook (2008)

    Google Scholar 

  25. Nocedal, J., Wright, S.: Numerical optimization. Springer (1999)

    Google Scholar 

  26. Caviness Jr., V., Filipek, P., Kennedy, D.: Magnetic resonance technology in human brain science: blueprint for a program based upon morphometry. Brain Dev. 11(1), 1–13 (1989)

    Article  Google Scholar 

  27. Fischl, B., Salat, D., van der Kouwe, A., Makris, N., Ségonne, F., Quinn, B., Dale, A.: Sequence-independent segmentation of magnetic resonance images. Neuroimage 23, S69–S84 (2004)

    Google Scholar 

  28. Iglesias, J., Liu, C., Thompson, P., Tu, Z.: Robust brain extraction across datasets and comparison with publicly available methods. IEEE Transactions on Medical Imaging 30(99), 1617–1634 (2011)

    Article  Google Scholar 

  29. Avants, B., Epstein, C., Grossman, M., Gee, J.: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical image analysis 12(1), 26–41 (2008)

    Article  Google Scholar 

  30. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR 2001 vol. 1, pp. 511–518

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iglesias, J.E., Sabuncu, M.R., Van Leemput, K. (2012). A Generative Model for Probabilistic Label Fusion of Multimodal Data. In: Yap, PT., Liu, T., Shen, D., Westin, CF., Shen, L. (eds) Multimodal Brain Image Analysis. MBIA 2012. Lecture Notes in Computer Science, vol 7509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33530-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33530-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33529-7

  • Online ISBN: 978-3-642-33530-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics