Abstract
The maturity of registration methods, in combination with the increasing processing power of computers, has made multi-atlas segmentation methods practical. The problem of merging the deformed label maps from the atlases is known as label fusion. Even though label fusion has been well studied for intramodality scenarios, it remains relatively unexplored when the nature of the target data is multimodal or when its modality is different from that of the atlases. In this paper, we review the literature on label fusion methods and also present an extension of our previously published algorithm to the general case in which the target data are multimodal. The method is based on a generative model that exploits the consistency of voxel intensities within the target scan based on the current estimate of the segmentation. Using brain MRI scans acquired with a multiecho FLASH sequence, we compare the method with majority voting, statistical-atlas-based segmentation, the popular package FreeSurfer and an adaptive local multi-atlas segmentation method. The results show that our approach produces highly accurate segmentations (Dice 86.3% across 22 brain structures of interest), outperforming the competing methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Rohlfing, T., Brandt, R., Menzel, R., Russakoff, D., Maurer, C.: Quo vadis, atlas-based segmentation? Handbook of Biomedical Image Analysis, pp. 435–486 (2005)
Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23, S151–S160 (2004)
Ashburner, J., Friston, K.: Unified segmentation. Neuroimage 26, 839–851 (2005)
Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Transactions on Medical Imaging 18(10), 897–908 (1999)
Thomas Yeo, B., Sabuncu, M., Desikan, R., Fischl, B., Golland, P.: Effects of registration regularization and atlas sharpness on segmentation accuracy. Medical Image Analysis 12(5), 603–615 (2008)
Heckemann, R., Hajnal, J., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33(1), 115–126 (2006)
Rohlfing, T., Brandt, R., Menzel, R., Maurer, C.: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21(4), 1428–1442 (2004)
Langerak, T., Van Der Heide, U., Kotte, A., Viergever, M., Van Vulpen, M., Pluim, J.: Label fusion in atlas-based segmentation using a selective and iterative method for performance level estimation (simple). IEEE Transactions on Medical Imaging 29(12), 2000–2008 (2010)
Klein, S., van der Heide, U., Lips, I., van Vulpen, M., Staring, M., Pluim, J.: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Medical Physics 35, 1407 (2008)
Artaechevarria, X., Muñoz-Barrutia, A., Ortiz-de Solorzano, C.: Combination strategies in multi-atlas image segmentation: Application to brain MR data. IEEE Transactions on Medical Imaging 28(8), 1266–1277 (2009)
Warfield, S., Zou, K., Wells, W.: Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image segmentation. IEEE Transactions on Medical Imaging 23(7), 903–921 (2004)
Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M., van Ginneken, B.: Multi-atlas-based segmentation with local decision fusion application to cardiac and aortic segmentation in ct scans. IEEE Transactions on Medical Imaging 28(7), 1000–1010 (2009)
Sabuncu, M., Yeo, B., Van Leemput, K., Fischl, B., Golland, P.: A generative model for image segmentation based on label fusion. IEEE Transactions on Medical Imaging 29(10), 1714–1729 (2010)
Coupé, P., Manjón, J., Fonov, V., Pruessner, J., Robles, M., Collins, D.: Nonlocal Patch-Based Label Fusion for Hippocampus Segmentation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 129–136. Springer, Heidelberg (2010)
Wang, H., Suh, J., Das, S., Pluta, J., Craige, C., Yushkevich, P.: Multi-atlas segmentation with joint label fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence (in press, 2012)
Cao, Y., Yuan, Y., Li, X., Turkbey, B., Choyke, P., Yan, P.: Segmenting Images by Combining Selected Atlases on Manifold. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 272–279. Springer, Heidelberg (2011)
Zhang, D., Wu, G., Jia, H., Shen, D.: Confidence-Guided Sequential Label Fusion for Multi-atlas Based Segmentation. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 643–650. Springer, Heidelberg (2011)
Nyul, L., Udupa, J., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Transactions on Medical Imaging 19(2), 143–150 (2000)
Staring, M., van der Heide, U., Klein, S., Viergever, M., Pluim, J.: Registration of cervical MRI using multifeature mutual information. IEEE Transactions on Medical Imaging 28(9), 1412–1421 (2009)
Sabuncu, M., Ramadge, P.: Using spanning graphs for efficient image registration. IEEE Transactions on Image Processing 17(5), 788–797 (2008)
Iglesias, J., Sabuncu, M., Van Leemput, K.: A generative model for multi-atlas segmentation across modalities. In: IEEE ISBI, pp. 888–891 (2012)
FreeSurfer: http://surfer.nmr.mgh.harvard.edu
Pohl, K., Fisher, J., Shenton, M., McCarley, R., Grimson, W., Kikinis, R., Wells, W.: Logarithm Odds Maps for Shape Representation. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 955–963. Springer, Heidelberg (2006)
Petersen, K., Pedersen, M.: The matrix cookbook (2008)
Nocedal, J., Wright, S.: Numerical optimization. Springer (1999)
Caviness Jr., V., Filipek, P., Kennedy, D.: Magnetic resonance technology in human brain science: blueprint for a program based upon morphometry. Brain Dev. 11(1), 1–13 (1989)
Fischl, B., Salat, D., van der Kouwe, A., Makris, N., Ségonne, F., Quinn, B., Dale, A.: Sequence-independent segmentation of magnetic resonance images. Neuroimage 23, S69–S84 (2004)
Iglesias, J., Liu, C., Thompson, P., Tu, Z.: Robust brain extraction across datasets and comparison with publicly available methods. IEEE Transactions on Medical Imaging 30(99), 1617–1634 (2011)
Avants, B., Epstein, C., Grossman, M., Gee, J.: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical image analysis 12(1), 26–41 (2008)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR 2001 vol. 1, pp. 511–518
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Iglesias, J.E., Sabuncu, M.R., Van Leemput, K. (2012). A Generative Model for Probabilistic Label Fusion of Multimodal Data. In: Yap, PT., Liu, T., Shen, D., Westin, CF., Shen, L. (eds) Multimodal Brain Image Analysis. MBIA 2012. Lecture Notes in Computer Science, vol 7509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33530-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-33530-3_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33529-7
Online ISBN: 978-3-642-33530-3
eBook Packages: Computer ScienceComputer Science (R0)