[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Label fusion for segmentation via patch based on local weighted voting

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Label fusion is a powerful image segmentation strategy that is becoming increasingly popular in medical imaging. However, satisfying the requirements of higher accuracy and less running time is always a great challenge. In this paper we propose a novel patch-based segmentation method combining a local weighted voting strategy with Bayesian inference. Multiple atlases are registered to a target image by an advanced normalization tools (ANTs) algorithm. To obtain a segmentation of the target, labels of the atlas images are propagated to the target image. We first adopt intensity prior and label prior as two key metrics when implementing the local weighted voting scheme, and then compute the two priors at the patch level. Further, we analyze the label fusion procedure concerning the image background and take the image background as an isolated label when estimating the label prior. Finally, by taking the Dice score as a criterion to quantitatively assess the accuracy of segmentations, we compare the results with those of other methods, including joint fusion, majority voting, local weighted voting, majority voting based on patch, and the widely used FreeSurfer whole-brain segmentation tool. It can be clearly seen that the proposed algorithm provides better results than the other methods. During the experiments, we make explorations about the influence of different parameters (including patch size, patch area, and the number of training subjects) on segmentation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asman, A.J., Landman, B.A., 2013. Non-local statistical label fusion for multi-atlas segmentation. Med. Image Anal., 17(2):194–208. http://dx.doi.org/10.1016/j.media.2012.10.002

    Article  Google Scholar 

  • Avants, B.B., Tustison, N.J., Song, G., et al., 2011. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage, 54(3):2033–2044. http://dx.doi.org/10.1016/j.neuroimage.2010.09.025

    Article  Google Scholar 

  • Cocosco, C., Zijdenbos, A., Evans, A., 2003. A fully automatic and robust brain MRI tissue classification method. Med. Image Anal., 7(4):513–527. http://dx.doi.org/10.1016/S1361-8415(03)00037-9

    Article  Google Scholar 

  • Coupé, P., Manjón, J., Fonov, V., et al., 2011. Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage, 54(2):940–954. http://dx.doi.org/10.1016/j.neuroimage.2010.09.018

    Article  Google Scholar 

  • Coupé, P., Eskildsen, S.F., Manjón, J.V., et al., 2012. Simultaneous segmentation and grading of anatomical structures for patient’s classification: application to Alzheimer’s disease. NeuroImage, 59(4):3736–3747. http://dx.doi.org/10.1016/j.neuroimage.2011.10.080

    Article  Google Scholar 

  • Eskildsen, S.F., Coupé, P., Fonov, V., et al., 2012. BEaST: brain extraction based on nonlocal segmentation technique. NeuroImage, 59(3):2362–2373. http://dx.doi.org/10.1016/j.neuroimage.2011.09.012

    Article  Google Scholar 

  • Ghasemi, J., Mollaei, M.R.K., Ghaderi, R., et al., 2012. Brain tissue segmentation based on spatial information fusion by Dempster-Shafer theory. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 13(7):520–533. http://dx.doi.org/10.1631/jzus.C1100288

    Article  Google Scholar 

  • Isgum, I., Staring, M., Rutten, A., et al., 2009. Multi-atlasbased segmentation with local decision fusion— application to cardiac and aortic segmentation in CTscans. IEEE Trans. Med. Imag., 28(7):1000–1010. http://dx.doi.org/10.1109/TMI.2008.2011480

    Article  Google Scholar 

  • Manjón, J.V., Carbonell-Caballero, J., Lull, J.J., et al., 2008. MRI denoising using non-local means. Med. Image Anal., 12(4):514–523. http://dx.doi.org/10.1016/j.media.2008.02.004

    Article  Google Scholar 

  • Rohlfing, T., Brandt, R., Menzel, R., et al., 2004. Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage, 21(4):1428–1442. http://dx.doi.org/10.1016/j.neuroimage.2003.11.010

    Article  Google Scholar 

  • Rousseau, F., Habas, P.A., Studholme, C., 2011. A supervised patch-based approach for human brain labeling. IEEE Trans. Med. Imag., 30(10):1852–1862. http://dx.doi.org/10.1109/TMI.2011.2156806

    Article  Google Scholar 

  • Sabuncu, M.R., Yeo, B.T.T., van Leemput, K., et al., 2010. A generative model for image segmentation based on label fusion. IEEE Trans. Med. Imag., 29(10):1714–1729. http://dx.doi.org/10.1109/TMI.2010.2050897

    Article  Google Scholar 

  • Shi, F., Yang, J., Zhu, Y.M., 2009. Automatic segmentation of bladder in CT images. J. Zhejiang Univ.-Sci. A, 10(2):239–246. http://dx.doi.org/10.1631/jzus.A0820157

    Article  MATH  Google Scholar 

  • Wang, H.Z., Yushkevich, P.A., 2013. Multi-atlas segmentation with joint label fusion and corrective learning—an open source implementation. Front. Neuroinform., 7:27. http://dx.doi.org/10.3389/fninf.2013.00027

    Google Scholar 

  • Wang, H.Z., Suh, J.W., Das, S.R., et al., 2013. Multi-atlas segmentation with joint label fusion. IEEE Trans. Patt. Anal. Mach. Intell., 35(3):611–623. http://dx.doi.org/10.1109/TPAMI.2012.143

    Article  Google Scholar 

  • Wang, L., Shi, F., Li, G., et al., 2014. Segmentation of neonatal brain MR images using patch-driven level sets. NeuroImage, 84(1):141–158. http://dx.doi.org/10.1016/j.neuroimage.2013.08.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Liu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61203224) and the Science and Technology Innovation Foundation of Shanghai Municipal Education Commission, China (No. 13YZ101)

ORCID: Gang LIU, http://orcid.org/0000-0003-3358-9299

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, K., Liu, G., Zhao, L. et al. Label fusion for segmentation via patch based on local weighted voting. Frontiers Inf Technol Electronic Eng 18, 680–688 (2017). https://doi.org/10.1631/FITEE.1500457

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500457

Key words

CLC number

Navigation