[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Trust Assessment on Data Stream Imputation in IoT Environments

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14162))

Included in the following conference series:

  • 788 Accesses

Abstract

In the era of internet of Things, stream data emitted by sensors may rise quality issues such as incompleteness caused mainly by sensors failure or transmission problems. It is therefore necessary to recover missing data because missing values can impact decision making. Within this landscape, trust on data imputation is a key issue for helping stakeholders involved in such process. In this paper, we address the problem related to the trustworthiness on imputed data streams in IoT environments. We propose here a method called CSIV (Confidence Score for Imputed Values) to assess trust by assigning a confidence score to imputed data. CSIV considers both trust score of non-missing values and neighboring sensors. We have evaluated CSIV on real datasets using accuracy and trustworthiness as evaluation metrics. Experiments show that CSIV is able to assign correctly a trust score to the imputed values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.ict-citypulse.eu/.

  2. 2.

    https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction.

References

  1. Adams, S., Beling, P.A., Greenspan, S., Velez-Rojas, M., Mankovski, S.: Model-based trust assessment for internet of things networks. In: 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), pp. 1838–1843. IEEE (2018)

    Google Scholar 

  2. Barddal, J.P.: Vertical and horizontal partitioning in data stream regression ensembles. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

    Google Scholar 

  3. Bertino, E.: Data trustworthiness—approaches and research challenges. In: Garcia-Alfaro, J., Herrera-Joancomartí, J., Lupu, E., Posegga, J., Aldini, A., Martinelli, F., Suri, N. (eds.) DPM/QASA/SETOP -2014. LNCS, vol. 8872, pp. 17–25. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17016-9_2

    Chapter  Google Scholar 

  4. Chhabra, G., Vashisht, V., Ranjan, J.: A comparison of multiple imputation methods for data with missing values. Indian J. Sci. Technol. 10(19), 1–7 (2017)

    Article  Google Scholar 

  5. Dong, W., Gao, S., Yang, X., Yu, H.: An exploration of online missing value imputation in non-stationary data stream. SN Comput. Sci. 2(2), 1–11 (2021)

    Article  Google Scholar 

  6. Hasan, M.K., Alam, M.A., Roy, S., Dutta, A., Jawad, M.T., Das, S.: Missing value imputation affects the performance of machine learning: a review and analysis of the literature (2010–2021). Inform. Med. Unlock. 27, 100799 (2021)

    Google Scholar 

  7. Junior, F.M.R., Kamienski, C.A.: A survey on trustworthiness for the internet of things. IEEE Access 9, 42493–42514 (2021)

    Article  Google Scholar 

  8. Lee, M., An, J., Lee, Y.: Missing-value imputation of continuous missing based on deep imputation network using correlations among multiple IoT data streams in a smart space. IEICE Trans. Inf. Syst. 102(2), 289–298 (2019)

    Article  Google Scholar 

  9. Lim, H.S., Moon, Y.S., Bertino, E.: Provenance-based trustworthiness assessment in sensor networks. In: Proceedings of the Seventh International Workshop on Data Management for Sensor Networks, pp. 2–7 (2010)

    Google Scholar 

  10. Liu, J., Adams, S., Beling, P.A.: An ensemble trust scoring method for internet of things sensor networks. In: 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), pp. 1–6. IEEE (2020)

    Google Scholar 

  11. Peng, T., Sellami, S., Boucelma, O.: IoT data imputation with incremental multiple linear regression. Open J. Internet Things 5(1), 69–79 (2019)

    Google Scholar 

  12. Peng, T., Sellami, S., Boucelma, O.: Trust assessment on streaming data: a real time predictive approach. In: Lemaire, V., Malinowski, S., Bagnall, A., Guyet, T., Tavenard, R., Ifrim, G. (eds.) AALTD 2020. LNCS (LNAI), vol. 12588, pp. 204–219. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65742-0_14

    Chapter  Google Scholar 

  13. Puiu, D., et al.: CityPulse: large scale data analytics framework for smart cities. IEEE Access 4, 1086–1108 (2016)

    Article  Google Scholar 

  14. Ramirez-Gallego, S., Krawczyk, B., Garcia, S., Wozniak, M., Herrera, F.: A survey on data preprocessing for data stream mining: current status and future directions. Neurocomputing 239, 39–57 (2017)

    Article  Google Scholar 

  15. Somasundaram, R., Nedunchezhian, R.: Evaluation of three simple imputation methods for enhancing preprocessing of data with missing values. Int. J. Comput. Appl. 21(10), 14–19 (2011)

    Google Scholar 

  16. Vu, M.A., et al.: Conditional expectation for missing data imputation. CoRR abs/2302.00911 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sana Sellami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, T., Sellami, S., Boucelma, O., Chbeir, R. (2023). Trust Assessment on Data Stream Imputation in IoT Environments. In: Nguyen, N.T., et al. Computational Collective Intelligence. ICCCI 2023. Lecture Notes in Computer Science(), vol 14162. Springer, Cham. https://doi.org/10.1007/978-3-031-41456-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41456-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41455-8

  • Online ISBN: 978-3-031-41456-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics