Abstract
IoT data, that most often carry a temporal dimension, can be exploited from an analysis perspective or from a forecasting one. In this paper, we propose a predictive approach to address the problem of data trustworthiness in a data stream generated by a Smart Home application. We describe an online Ensemble Regression model that performs prediction in assigning a trust score to a target temporal value in real-time. Experiments conducted with data retrieved from the UCI ML repository demonstrate the performance of the model, while assessing data accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Details about Page-Hinkley method for concept drift detection are available at https://scikit-multiflow.github.io/scikit-multiflow/.
- 3.
Available in Sklearn: https://scikit-learn.org/stable/.
References
Adams, S., Beling, P.A., Greenspan, S., Velez-Rojas, M., Mankovski, S.: Model-based trust assessment for Internet of Things networks. In: 2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), pp. 1838–1843. IEEE (2018)
Almeida, E., Ferreira, C., Gama, J.: Adaptive model rules from data streams. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8188, pp. 480–492. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40988-2_31
de Almeida, R., Goh, Y.M., Monfared, R.P., Steiner, M.T.A., West, A.: An ensemble based on neural networks with random weights for online data stream regression. Soft Comput. 24(13), 9835–9855 (2020)
Barddal, J.P.: Vertical and horizontal partitioning in data stream regression ensembles. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)
Barddal, J.P., Gomes, H.M., Enembreck, F.: Advances on concept drift detection in regression tasks using social networks theory. Int. J. Nat. Comput. Res. (IJNCR) 5(1), 26–41 (2015)
Dai, C., Lin, D., Bertino, E., Kantarcioglu, M.: An approach to evaluate data trustworthiness based on data provenance. In: Jonker, W., Petković, M. (eds.) SDM 2008. LNCS, vol. 5159, pp. 82–98. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85259-9_6
Ding, J., Wang, H., Li, C., Chai, T., Wang, J.: An online learning neural network ensembles with random weights for regression of sequential data stream. Soft Comput. 21(20), 5919–5937 (2016). https://doi.org/10.1007/s00500-016-2269-9
Elwell, R., Polikar, R.: Incremental learning of variable rate concept drift. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 142–151. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02326-2_15
Ramírez-Gallego, S., Krawczyk, B., García, S., Wozniak, M., Herrera, F.: A survey on data preprocessing for data stream mining: current status and future directions. Neurocomputing 239, 39–57 (2017)
Gama, J.: Knowledge Discovery from Data Streams. CRC Press, Boca Raton (2010)
Ganeriwal, S., Balzano, L.K., Srivastava, M.B.: Reputation-based framework for high integrity sensor networks. ACM Trans. Sens. Netw. (TOSN) 4(3), 1–37 (2008)
Gomes, H.M., Barddal, J.P., Ferreira, L.E.B., Bifet, A.: Adaptive random forests for data stream regression. In: ESANN (2018)
Gwadera, R., Riahi, M., Aberer, K.: Pattern-wise trust assessment of sensor data. In: 2014 IEEE 15th International Conference on Mobile Data Management, vol. 1, pp. 127–136. IEEE (2014)
Ikonomovska, E., Gama, J., Džeroski, S.: Online tree-based ensembles and option trees for regression on evolving data streams. Neurocomputing 150, 458–470 (2015)
Javed, N., Wolf, T.: Automated sensor verification using outlier detection in the Internet of Things. In: 2012 32nd International Conference on Distributed Computing Systems Workshops, pp. 291–296. IEEE (2012)
Jayasinghe, U., Otebolaku, A., Um, T.W., Lee, G.M.: Data centric trust evaluation and prediction framework for IoT. In: 2017 ITU Kaleidoscope: Challenges for a Data-Driven Society (ITU K), pp. 1–7. IEEE (2017)
Kadlec, P., Gabrys, B.: Local learning-based adaptive soft sensor for catalyst activation prediction. AIChE J. 57(5), 1288–1301 (2011)
Karthik, N., Ananthanarayana, V.: Data trust model for event detection in wireless sensor networks using data correlation techniques. In: 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN), pp. 1–5. IEEE (2017)
Kolter, J.Z., Maloof, M.A.: Using additive expert ensembles to cope with concept drift. In: Proceedings of the 22nd International Conference on Machine learning, pp. 449–456 (2005)
Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M.: Ensemble learning for data stream analysis: a survey. Inf. Fusion 37, 132–156 (2017)
Leonardi, A., Ziekow, H., Strohbach, M., Kikiras, P.: Dealing with data quality in smart home environments—lessons learned from a smart grid pilot. J. Sens. Actuator Netw. 5(1), 5 (2016)
Lim, H.S., Moon, Y.S., Bertino, E.: Provenance-based trustworthiness assessment in sensor networks. In: Proceedings of the Seventh International Workshop on Data Management for Sensor Networks, pp. 2–7 (2010)
Lin, H., Bergmann, N.W.: IoT privacy and security challenges for smart home environments. Information 7(3), 44 (2016)
Soares, S.G., Araújo, R.: A dynamic and on-line ensemble regression for changing environments. Expert. Syst. Appl. 42(6), 2935–2948 (2015)
Soares, S.G., Araújo, R.: An on-line weighted ensemble of regressor models to handle concept drifts. Eng. Appl. Artif. Intell. 37, 392–406 (2015)
Tran, L., Fan, L., Shahabi, C.: Outlier detection in non-stationary data streams. In: Proceedings of the 31st International Conference on Scientific and Statistical Database Management, pp. 25–36. ACM (2019)
Wang, X., Govindan, K., Mohapatra, P.: Provenance-based information trustworthiness evaluation in multi-hop networks. In: 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, pp. 1–5. IEEE (2010)
Won, J., Bertino, E.: Distance-based trustworthiness assessment for sensors in wireless sensor networks. NSS 2015. LNCS, vol. 9408, pp. 18–31. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25645-0_2
Xiao, J., Xiao, Z., Wang, D., Bai, J., Havyarimana, V., Zeng, F.: Short-term traffic volume prediction by ensemble learning in concept drifting environments. Knowl. Based Syst. 164, 213–225 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Peng, T., Sellami, S., Boucelma, O. (2020). Trust Assessment on Streaming Data: A Real Time Predictive Approach. In: Lemaire, V., Malinowski, S., Bagnall, A., Guyet, T., Tavenard, R., Ifrim, G. (eds) Advanced Analytics and Learning on Temporal Data. AALTD 2020. Lecture Notes in Computer Science(), vol 12588. Springer, Cham. https://doi.org/10.1007/978-3-030-65742-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-65742-0_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-65741-3
Online ISBN: 978-3-030-65742-0
eBook Packages: Computer ScienceComputer Science (R0)