[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Trust Assessment on Streaming Data: A Real Time Predictive Approach

  • Conference paper
  • First Online:
Advanced Analytics and Learning on Temporal Data (AALTD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12588))

Abstract

IoT data, that most often carry a temporal dimension, can be exploited from an analysis perspective or from a forecasting one. In this paper, we propose a predictive approach to address the problem of data trustworthiness in a data stream generated by a Smart Home application. We describe an online Ensemble Regression model that performs prediction in assigning a trust score to a target temporal value in real-time. Experiments conducted with data retrieved from the UCI ML repository demonstrate the performance of the model, while assessing data accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    UCI https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction.

  2. 2.

    Details about Page-Hinkley method for concept drift detection are available at https://scikit-multiflow.github.io/scikit-multiflow/.

  3. 3.

    Available in Sklearn: https://scikit-learn.org/stable/.

References

  1. Adams, S., Beling, P.A., Greenspan, S., Velez-Rojas, M., Mankovski, S.: Model-based trust assessment for Internet of Things networks. In: 2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), pp. 1838–1843. IEEE (2018)

    Google Scholar 

  2. Almeida, E., Ferreira, C., Gama, J.: Adaptive model rules from data streams. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8188, pp. 480–492. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40988-2_31

    Chapter  Google Scholar 

  3. de Almeida, R., Goh, Y.M., Monfared, R.P., Steiner, M.T.A., West, A.: An ensemble based on neural networks with random weights for online data stream regression. Soft Comput. 24(13), 9835–9855 (2020)

    Article  Google Scholar 

  4. Barddal, J.P.: Vertical and horizontal partitioning in data stream regression ensembles. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

    Google Scholar 

  5. Barddal, J.P., Gomes, H.M., Enembreck, F.: Advances on concept drift detection in regression tasks using social networks theory. Int. J. Nat. Comput. Res. (IJNCR) 5(1), 26–41 (2015)

    Article  Google Scholar 

  6. Dai, C., Lin, D., Bertino, E., Kantarcioglu, M.: An approach to evaluate data trustworthiness based on data provenance. In: Jonker, W., Petković, M. (eds.) SDM 2008. LNCS, vol. 5159, pp. 82–98. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85259-9_6

    Chapter  Google Scholar 

  7. Ding, J., Wang, H., Li, C., Chai, T., Wang, J.: An online learning neural network ensembles with random weights for regression of sequential data stream. Soft Comput. 21(20), 5919–5937 (2016). https://doi.org/10.1007/s00500-016-2269-9

    Article  Google Scholar 

  8. Elwell, R., Polikar, R.: Incremental learning of variable rate concept drift. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 142–151. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02326-2_15

    Chapter  Google Scholar 

  9. Ramírez-Gallego, S., Krawczyk, B., García, S., Wozniak, M., Herrera, F.: A survey on data preprocessing for data stream mining: current status and future directions. Neurocomputing 239, 39–57 (2017)

    Google Scholar 

  10. Gama, J.: Knowledge Discovery from Data Streams. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  11. Ganeriwal, S., Balzano, L.K., Srivastava, M.B.: Reputation-based framework for high integrity sensor networks. ACM Trans. Sens. Netw. (TOSN) 4(3), 1–37 (2008)

    Article  Google Scholar 

  12. Gomes, H.M., Barddal, J.P., Ferreira, L.E.B., Bifet, A.: Adaptive random forests for data stream regression. In: ESANN (2018)

    Google Scholar 

  13. Gwadera, R., Riahi, M., Aberer, K.: Pattern-wise trust assessment of sensor data. In: 2014 IEEE 15th International Conference on Mobile Data Management, vol. 1, pp. 127–136. IEEE (2014)

    Google Scholar 

  14. Ikonomovska, E., Gama, J., Džeroski, S.: Online tree-based ensembles and option trees for regression on evolving data streams. Neurocomputing 150, 458–470 (2015)

    Article  Google Scholar 

  15. Javed, N., Wolf, T.: Automated sensor verification using outlier detection in the Internet of Things. In: 2012 32nd International Conference on Distributed Computing Systems Workshops, pp. 291–296. IEEE (2012)

    Google Scholar 

  16. Jayasinghe, U., Otebolaku, A., Um, T.W., Lee, G.M.: Data centric trust evaluation and prediction framework for IoT. In: 2017 ITU Kaleidoscope: Challenges for a Data-Driven Society (ITU K), pp. 1–7. IEEE (2017)

    Google Scholar 

  17. Kadlec, P., Gabrys, B.: Local learning-based adaptive soft sensor for catalyst activation prediction. AIChE J. 57(5), 1288–1301 (2011)

    Article  Google Scholar 

  18. Karthik, N., Ananthanarayana, V.: Data trust model for event detection in wireless sensor networks using data correlation techniques. In: 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN), pp. 1–5. IEEE (2017)

    Google Scholar 

  19. Kolter, J.Z., Maloof, M.A.: Using additive expert ensembles to cope with concept drift. In: Proceedings of the 22nd International Conference on Machine learning, pp. 449–456 (2005)

    Google Scholar 

  20. Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M.: Ensemble learning for data stream analysis: a survey. Inf. Fusion 37, 132–156 (2017)

    Article  Google Scholar 

  21. Leonardi, A., Ziekow, H., Strohbach, M., Kikiras, P.: Dealing with data quality in smart home environments—lessons learned from a smart grid pilot. J. Sens. Actuator Netw. 5(1), 5 (2016)

    Article  Google Scholar 

  22. Lim, H.S., Moon, Y.S., Bertino, E.: Provenance-based trustworthiness assessment in sensor networks. In: Proceedings of the Seventh International Workshop on Data Management for Sensor Networks, pp. 2–7 (2010)

    Google Scholar 

  23. Lin, H., Bergmann, N.W.: IoT privacy and security challenges for smart home environments. Information 7(3), 44 (2016)

    Article  Google Scholar 

  24. Soares, S.G., Araújo, R.: A dynamic and on-line ensemble regression for changing environments. Expert. Syst. Appl. 42(6), 2935–2948 (2015)

    Article  Google Scholar 

  25. Soares, S.G., Araújo, R.: An on-line weighted ensemble of regressor models to handle concept drifts. Eng. Appl. Artif. Intell. 37, 392–406 (2015)

    Article  Google Scholar 

  26. Tran, L., Fan, L., Shahabi, C.: Outlier detection in non-stationary data streams. In: Proceedings of the 31st International Conference on Scientific and Statistical Database Management, pp. 25–36. ACM (2019)

    Google Scholar 

  27. Wang, X., Govindan, K., Mohapatra, P.: Provenance-based information trustworthiness evaluation in multi-hop networks. In: 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, pp. 1–5. IEEE (2010)

    Google Scholar 

  28. Won, J., Bertino, E.: Distance-based trustworthiness assessment for sensors in wireless sensor networks. NSS 2015. LNCS, vol. 9408, pp. 18–31. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25645-0_2

    Chapter  Google Scholar 

  29. Xiao, J., Xiao, Z., Wang, D., Bai, J., Havyarimana, V., Zeng, F.: Short-term traffic volume prediction by ensemble learning in concept drifting environments. Knowl. Based Syst. 164, 213–225 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, T., Sellami, S., Boucelma, O. (2020). Trust Assessment on Streaming Data: A Real Time Predictive Approach. In: Lemaire, V., Malinowski, S., Bagnall, A., Guyet, T., Tavenard, R., Ifrim, G. (eds) Advanced Analytics and Learning on Temporal Data. AALTD 2020. Lecture Notes in Computer Science(), vol 12588. Springer, Cham. https://doi.org/10.1007/978-3-030-65742-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65742-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65741-3

  • Online ISBN: 978-3-030-65742-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics