Abstract
It has been previously demonstrated in robots that the mimicking of functional characteristics of biologic memory can be beneficial for providing accurate learning and recognition in circumstances of social human-robot-interaction. The effective encoding of social and physical salient features has been demonstrated through the use of Bayesian Latent Variable Models as abstractions of memories (Simple Synthetic Memories). In this work, we explore the capabilities of formation and recall of tactile memories associated to the encoding of geometric and spatial qualities. Compression and pattern separation are evaluated against the use of raw data in a nearest neighbour regression model, obtaining a substantial improvement in accuracy for prediction of geometric properties of the stimulus. Additionally, pattern completion is assessed with the generation of ‘imagined touch’ streams of data showing similarities to real world tactile observations. The use of this model for tactile memories offers the potential for robustly perform sensorimotor tasks in which the sense of touch is involved.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Aquilina, K., Barton, D.A., Lepora, N.F.: Principal components of touch. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 4071–4078. Institute of Electrical and Electronics Engineers Inc., September 2018. https://doi.org/10.1109/ICRA.2018.8461045
Boorman, L.W., Damianou, A.C., Martinez-Hernandez, U., Prescott, T.J.: Extending a hippocampal model for navigation around a maze generated from real-world data. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) LIVINGMACHINES 2015. LNCS (LNAI), vol. 9222, pp. 441–452. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22979-9_44
Chorley, C., Melhuish, C., Pipe, T., Rossiter, J.: Development of a tactile sensor based on biologically inspired edge encoding. In: 2009 International Conference on Advanced Robotics, ICAR 2009 (2009)
Damianou, A., Ek, C.H., Boorman, L., Lawrence, N.D., Prescott, T.J.: A top-down approach for a synthetic autobiographical memory system. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) LIVINGMACHINES 2015. LNCS (LNAI), vol. 9222, pp. 280–292. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22979-9_28
Evans, M.H., Fox, C.W., Prescott, T.J.: Machines learning - towards a new synthetic autobiographical memory. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds.) Living Machines 2014. LNCS (LNAI), vol. 8608, pp. 84–96. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09435-9_8
GPy: GPy: A Gaussian process framework in PyThon (2014). http://github.com/SheffieldML/GPy
Lawrence, N.: Probabilistic non-linear principal component analysis with gaussian process latent variable models. J. Mach. Learn. Res. 6, 1783–1816 (2005)
Lawrence, N.D.: Gaussian process latent variable models for visualisation of high dimensional data. In: Advances in Neural Information Processing Systems (2004)
Lepora, N.F., Aquilina, K., Cramphorn, L.: Exploratory tactile servoing with active touch. IEEE Robot. Autom. Lett. 2(2), 1156–1163 (2017). https://doi.org/10.1109/LRA.2017.2662071
Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18(1), 50–60 (1947). http://www.jstor.org/stable/2236101
Martinez-Hernandez, U., Damianou, A., Camilleri, D., Boorman, L.W., Lawrence, N., Prescott, T.J.: An integrated probabilistic framework for robot perception, learning and memory. In: 2016 IEEE International Conference on Robotics and Biomimetics, ROBIO 2016, pp. 1796–1801 (2016). https://doi.org/10.1109/ROBIO.2016.7866589
Prescott, T.J., Camilleri, D., Martinez-Hernandez, U., Damianou, A., Lawrence, N.D.: Memory and mental time travel in humans and social robots. Philos. Trans. Roy. Soc. B Biol. Sci. 374(1771), 20180025 (2019). https://doi.org/10.1098/rstb.2018.0025
Sakata, H., Shibutani, H., Kawano, K.: Neural correlates of space perception in the parietal association cortex of the monkey. In: Brain and Behaviour, Pergamon, pp. 291–298, January 1981. https://doi.org/10.1016/b978-0-08-027338-9.50047-5
Salazar, P.J., Prescott, T.J.: Deep Gaussian processes for angle and position discrimination in active touch sensing. In: Cañamero, L., Gaussier, P., Wilson, M., Boucenna, S., Cuperlier, N. (eds.) SAB 2022. LNAI, vol. 13499, pp. 41–51. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16770-6_4
Salazar, P.J., Prescott, T.J.: Tactile and proprioceptive online learning in robotic contour following. In: Pacheco-Gutierrez, S., Cryer, A., Caliskanelli, I., Tugal, H., Skilton, R. (eds.) TAROS 2022. LNAI, vol. 13546, pp. 166–178. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15908-4_14
Stone, E.A., Lepora, N.F., Barton, D.A.: Learning to live life on the edge: online learning for data-efficient tactile contour following. In: IEEE International Conference on Intelligent Robots and Systems, pp. 9854–9860. Institute of Electrical and Electronics Engineers Inc., September 2020. https://doi.org/10.1109/IROS45743.2020.9341565. arXiv:1909.05808
Tanaka, D., Matsubara, T., Ichien, K., Sugimoto, K.: Object manifold learning with action features for active tactile object recognition. In: IEEE International Conference on Intelligent Robots and Systems, pp. 608–614. IEEE, September 2014. https://doi.org/10.1109/IROS.2014.6942622
Titsias, M.K., Lawrence, N.D.: Bayesian Gaussian process latent variable model. J. Mach. Learn. Res. 9, 844–851 (2010). JMLR Workshop and Conference Proceedings
Acknowledgments
This work was supported by European Union’s Horizon 2020 MSCA Programme under Grant Agreement No. 813713 NeuTouch and by the EU Horizon 2020 FET Flagship programme through the Human Brain Project (HBP-SGA3, 945539).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Competing Interests
TJP is a director and shareholder in two robotics companies-Consequential Robotics Ltd. and Bettering Our Worlds (BOW) Ltd. These companies are not expected to benefit from this publication. PJS has no competing interests.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Salazar, P.J., Prescott, T.J. (2023). Simple Synthetic Memories of Robotic Touch. In: Meder, F., Hunt, A., Margheri, L., Mura, A., Mazzolai, B. (eds) Biomimetic and Biohybrid Systems. Living Machines 2023. Lecture Notes in Computer Science(), vol 14157. Springer, Cham. https://doi.org/10.1007/978-3-031-38857-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-38857-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-38856-9
Online ISBN: 978-3-031-38857-6
eBook Packages: Computer ScienceComputer Science (R0)