[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Simple Synthetic Memories of Robotic Touch

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14157))

Included in the following conference series:

  • 773 Accesses

Abstract

It has been previously demonstrated in robots that the mimicking of functional characteristics of biologic memory can be beneficial for providing accurate learning and recognition in circumstances of social human-robot-interaction. The effective encoding of social and physical salient features has been demonstrated through the use of Bayesian Latent Variable Models as abstractions of memories (Simple Synthetic Memories). In this work, we explore the capabilities of formation and recall of tactile memories associated to the encoding of geometric and spatial qualities. Compression and pattern separation are evaluated against the use of raw data in a nearest neighbour regression model, obtaining a substantial improvement in accuracy for prediction of geometric properties of the stimulus. Additionally, pattern completion is assessed with the generation of ‘imagined touch’ streams of data showing similarities to real world tactile observations. The use of this model for tactile memories offers the potential for robustly perform sensorimotor tasks in which the sense of touch is involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 47.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aquilina, K., Barton, D.A., Lepora, N.F.: Principal components of touch. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 4071–4078. Institute of Electrical and Electronics Engineers Inc., September 2018. https://doi.org/10.1109/ICRA.2018.8461045

  2. Boorman, L.W., Damianou, A.C., Martinez-Hernandez, U., Prescott, T.J.: Extending a hippocampal model for navigation around a maze generated from real-world data. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) LIVINGMACHINES 2015. LNCS (LNAI), vol. 9222, pp. 441–452. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22979-9_44

    Chapter  Google Scholar 

  3. Chorley, C., Melhuish, C., Pipe, T., Rossiter, J.: Development of a tactile sensor based on biologically inspired edge encoding. In: 2009 International Conference on Advanced Robotics, ICAR 2009 (2009)

    Google Scholar 

  4. Damianou, A., Ek, C.H., Boorman, L., Lawrence, N.D., Prescott, T.J.: A top-down approach for a synthetic autobiographical memory system. In: Wilson, S.P., Verschure, P.F.M.J., Mura, A., Prescott, T.J. (eds.) LIVINGMACHINES 2015. LNCS (LNAI), vol. 9222, pp. 280–292. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22979-9_28

    Chapter  Google Scholar 

  5. Evans, M.H., Fox, C.W., Prescott, T.J.: Machines learning - towards a new synthetic autobiographical memory. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds.) Living Machines 2014. LNCS (LNAI), vol. 8608, pp. 84–96. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09435-9_8

    Chapter  Google Scholar 

  6. GPy: GPy: A Gaussian process framework in PyThon (2014). http://github.com/SheffieldML/GPy

  7. Lawrence, N.: Probabilistic non-linear principal component analysis with gaussian process latent variable models. J. Mach. Learn. Res. 6, 1783–1816 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Lawrence, N.D.: Gaussian process latent variable models for visualisation of high dimensional data. In: Advances in Neural Information Processing Systems (2004)

    Google Scholar 

  9. Lepora, N.F., Aquilina, K., Cramphorn, L.: Exploratory tactile servoing with active touch. IEEE Robot. Autom. Lett. 2(2), 1156–1163 (2017). https://doi.org/10.1109/LRA.2017.2662071

    Article  Google Scholar 

  10. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18(1), 50–60 (1947). http://www.jstor.org/stable/2236101

  11. Martinez-Hernandez, U., Damianou, A., Camilleri, D., Boorman, L.W., Lawrence, N., Prescott, T.J.: An integrated probabilistic framework for robot perception, learning and memory. In: 2016 IEEE International Conference on Robotics and Biomimetics, ROBIO 2016, pp. 1796–1801 (2016). https://doi.org/10.1109/ROBIO.2016.7866589

  12. Prescott, T.J., Camilleri, D., Martinez-Hernandez, U., Damianou, A., Lawrence, N.D.: Memory and mental time travel in humans and social robots. Philos. Trans. Roy. Soc. B Biol. Sci. 374(1771), 20180025 (2019). https://doi.org/10.1098/rstb.2018.0025

    Article  Google Scholar 

  13. Sakata, H., Shibutani, H., Kawano, K.: Neural correlates of space perception in the parietal association cortex of the monkey. In: Brain and Behaviour, Pergamon, pp. 291–298, January 1981. https://doi.org/10.1016/b978-0-08-027338-9.50047-5

  14. Salazar, P.J., Prescott, T.J.: Deep Gaussian processes for angle and position discrimination in active touch sensing. In: Cañamero, L., Gaussier, P., Wilson, M., Boucenna, S., Cuperlier, N. (eds.) SAB 2022. LNAI, vol. 13499, pp. 41–51. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16770-6_4

    Chapter  Google Scholar 

  15. Salazar, P.J., Prescott, T.J.: Tactile and proprioceptive online learning in robotic contour following. In: Pacheco-Gutierrez, S., Cryer, A., Caliskanelli, I., Tugal, H., Skilton, R. (eds.) TAROS 2022. LNAI, vol. 13546, pp. 166–178. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15908-4_14

    Chapter  Google Scholar 

  16. Stone, E.A., Lepora, N.F., Barton, D.A.: Learning to live life on the edge: online learning for data-efficient tactile contour following. In: IEEE International Conference on Intelligent Robots and Systems, pp. 9854–9860. Institute of Electrical and Electronics Engineers Inc., September 2020. https://doi.org/10.1109/IROS45743.2020.9341565. arXiv:1909.05808

  17. Tanaka, D., Matsubara, T., Ichien, K., Sugimoto, K.: Object manifold learning with action features for active tactile object recognition. In: IEEE International Conference on Intelligent Robots and Systems, pp. 608–614. IEEE, September 2014. https://doi.org/10.1109/IROS.2014.6942622

  18. Titsias, M.K., Lawrence, N.D.: Bayesian Gaussian process latent variable model. J. Mach. Learn. Res. 9, 844–851 (2010). JMLR Workshop and Conference Proceedings

    Google Scholar 

Download references

Acknowledgments

This work was supported by European Union’s Horizon 2020 MSCA Programme under Grant Agreement No. 813713 NeuTouch and by the EU Horizon 2020 FET Flagship programme through the Human Brain Project (HBP-SGA3, 945539).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo J. Salazar .

Editor information

Editors and Affiliations

Ethics declarations

Competing Interests

TJP is a director and shareholder in two robotics companies-Consequential Robotics Ltd. and Bettering Our Worlds (BOW) Ltd. These companies are not expected to benefit from this publication. PJS has no competing interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salazar, P.J., Prescott, T.J. (2023). Simple Synthetic Memories of Robotic Touch. In: Meder, F., Hunt, A., Margheri, L., Mura, A., Mazzolai, B. (eds) Biomimetic and Biohybrid Systems. Living Machines 2023. Lecture Notes in Computer Science(), vol 14157. Springer, Cham. https://doi.org/10.1007/978-3-031-38857-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38857-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38856-9

  • Online ISBN: 978-3-031-38857-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics