[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Tactile and Proprioceptive Online Learning in Robotic Contour Following

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13546))

Included in the following conference series:

Abstract

Purposive and systematic movements are required for the exploration of tactile properties. Obtaining precise spatial details of the shape of an object with tactile data requires a dynamic edge following exploratory procedure. The contour following task relies on the perception of the angle and position of the sensor relative to the edge of the object. The perceived angle determines the direction of exploratory actions, and the position indicates the location relative to the edge for placing the sensor where the angle tends to be perceived more accurately. Differences in the consistency of the acquired tactile data during the execution of the task might induce inaccuracies in the predictions of the sensor model, and therefore impact on the enactment of active and exploratory movements. This work examines the influence of integrating information from robot proprioception to assess the accuracy of a Bayesian model and update its parameters to enhance the perception of angle and position of the sensor. The incorporation of proprioceptive information achieves an increased number of task completions relative to performing the task with a model trained with tactile data collected offline. Studies in biological touch suggest that tactile and proprioceptive information contribute synergistically to the perception of geometric properties and control of the sensory apparatus; this work proposes a method for the improvement of perception of the magnitudes required to actively follow the contour of an object under the presence of variability in the acquired tactile data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 47.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chorley, C., Melhuish, C., Pipe, T., Rossiter, J.: Development of a tactile sensor based on biologically inspired edge encoding. In: 2009 International Conference on Advanced Robotics, pp. 1–6 (2009). https://ieeexplore.ieee.org/document/5174720

  2. Corniani, G., Saal, H.P.: Tactile innervation densities across the whole body. J. Neurophysiol. 124(4), 1229–1240 (2020). https://doi.org/10.1152/jn.00313.2020

    Article  Google Scholar 

  3. Driess, D., Hennes, D., Toussaint, M.: Active multi-contact continuous tactile exploration with Gaussian process differential entropy. In: 2019 International Conference on Robotics and Automation (ICRA), vol. 2019-May, pp. 7844–7850. IEEE (2019). https://doi.org/10.1109/ICRA.2019.8793773

  4. Felleman, D.J., Van Essen, D.C.: Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1(1), 1–47 (1991). https://doi.org/10.1093/cercor/1.1.1

    Article  Google Scholar 

  5. Gardner, E.P.: Somatosensory cortical mechanisms of feature detection in tactile and kinesthetic discrimination. Can. J. Physiol. Pharmacol. 66(4), 439–454 (1988). https://doi.org/10.1139/y88-074

    Article  Google Scholar 

  6. Gibson, J.J.: Observations on active touch. Psychol. Rev. 69(6), 477–491 (1962). https://doi.org/10.1037/h0046962

    Article  Google Scholar 

  7. Iwamura, Y., Iriki, A., Tanaka, M.: Bilateral hand representation in the postcentral somatosensory cortex. Nature 369(6481), 554–556 (1994). https://doi.org/10.1038/369554a0

    Article  Google Scholar 

  8. Iwamura, Y., Tanaka, M., Sakamoto, M., Hikosaka, O.: Rostrocaudal gradients in the neuronal receptive field complexity in the finger region of the alert monkey’s postcentral gyrus. Exp. Brain Res. 92(3), 360–368 (1993). https://doi.org/10.1007/BF00229023

    Article  Google Scholar 

  9. Jamali, N., Ciliberto, C., Rosasco, L., Natale, L.: Active perception: building objects’ models using tactile exploration. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pp. 179–185. IEEE (2016). https://doi.org/10.1109/HUMANOIDS.2016.7803275

  10. Kappassov, Z., Corrales, J.A., Perdereau, V.: Tactile sensing in dexterous robot hands - review. Robot. Auton. Syst. 74, 195–220 (2015). https://doi.org/10.1016/j.robot.2015.07.015

    Article  Google Scholar 

  11. Lederman, S.J., Klatzky, R.L.: Haptic perception: a tutorial. Attent. Percept. Psychophys. 71(7), 1439–1459 (2009). https://doi.org/10.3758/APP.71.7.1439

    Article  Google Scholar 

  12. Lederman, S.J., Klatzky, R.L.: Hand movements: a window into haptic object recognition. Cogn. Psychol. 19(3), 342–368 (1987). https://doi.org/10.1016/0010-0285(87)90008-9

    Article  Google Scholar 

  13. Lederman, S.J., Klatzky, R.L.: Extracting object properties through haptic exploration. Acta Psychol. 84(1), 29–40 (1993). https://doi.org/10.1016/0001-6918(93)90070-8

    Article  Google Scholar 

  14. Lepora, N.F.: Biomimetic active touch with fingertips and whiskers. IEEE Trans. Haptics 9(2), 170–183 (2016). https://doi.org/10.1109/TOH.2016.2558180

    Article  Google Scholar 

  15. Lepora, N.F.: Touch, vol. 1. Oxford University Press, Oxford (2018). https://doi.org/10.1093/oso/9780199674923.003.0016

    Book  Google Scholar 

  16. Lepora, N.F., Aquilina, K., Cramphorn, L.: Exploratory tactile servoing with active touch. IEEE Robot. Autom. Lett. 2(2), 1156–1163 (2017). https://doi.org/10.1109/LRA.2017.2662071

    Article  Google Scholar 

  17. Li, Q., Kroemer, O., Su, Z., Veiga, F.F., Kaboli, M., Ritter, H.J.: A review of tactile information: perception and action through touch. IEEE Trans. Robot. 36(6), 1619–1634 (2020). https://doi.org/10.1109/TRO.2020.3003230

    Article  Google Scholar 

  18. Martinez-Hernandez, U., Dodd, T., Prescott, T.J., Lepora, N.F.: Active Bayesian perception for angle and position discrimination with a biomimetic fingertip. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5968–5973. IEEE (2013). https://doi.org/10.1109/IROS.2013.6697222

  19. Martinez-Hernandez, U., Dodd, T.J., Natale, L., Metta, G., Prescott, T.J., Lepora, N.F.: Active contour following to explore object shape with robot touch. In: 2013 World Haptics Conference (WHC), pp. 341–346. IEEE (2013). https://doi.org/10.1109/WHC.2013.6548432

  20. Matsubara, T., Shibata, K.: Active tactile exploration with uncertainty and travel cost for fast shape estimation of unknown objects. Robot. Auton. Syst. 91, 314–326 (2017). https://doi.org/10.1016/j.robot.2017.01.014

    Article  Google Scholar 

  21. Prescott, T.J., Diamond, M.E., Wing, A.M.: Active touch sensing. Philos. Trans. R. Soc. B: Biol. Sci. 366(1581), 2989–2995 (2011). https://doi.org/10.1098/rstb.2011.0167

    Article  Google Scholar 

  22. Saal, H.P., Bensmaia, S.J.: Touch is a team effort: interplay of submodalities in cutaneous sensibility. Trends Neurosci. 37(12), 689–697 (2014). https://doi.org/10.1016/j.tins.2014.08.012

    Article  Google Scholar 

  23. Seminara, L., Gastaldo, P., Watt, S.J., Valyear, K.F., Zuher, F., Mastrogiovanni, F.: Active haptic perception in robots: a review. Front. Neurorobot. 13, 53 (2019). https://doi.org/10.3389/fnbot.2019.00053

    Article  Google Scholar 

  24. Yi, Z., et al.: Active tactile object exploration with Gaussian processes. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 2016-Novem, pp. 4925–4930. IEEE (10 2016). https://doi.org/10.1109/IROS.2016.7759723

  25. Zhang, H.: The optimality of Naive Bayes. In: Barr, V., Markov, Z. (eds.) Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference, FLAIRS 2004, Florida, vol. 2, pp. 562–567 (2004). https://aaai.org/Library/FLAIRS/2004/flairs04-097.php

Download references

Acknowledgments

This work is supported by European Union’s Horizon 2020 MSCA Programme under Grant Agreement No. 813713 NeuTouch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo J. Salazar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salazar, P.J., Prescott, T.J. (2022). Tactile and Proprioceptive Online Learning in Robotic Contour Following. In: Pacheco-Gutierrez, S., Cryer, A., Caliskanelli, I., Tugal, H., Skilton, R. (eds) Towards Autonomous Robotic Systems. TAROS 2022. Lecture Notes in Computer Science(), vol 13546. Springer, Cham. https://doi.org/10.1007/978-3-031-15908-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15908-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15907-7

  • Online ISBN: 978-3-031-15908-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics