Abstract
Autobiographical memory is the organisation of episodes and contextual information from an individual’s experiences into a coherent narrative, which is key to our sense of self. Formation and recall of autobiographical memories is essential for effective, adaptive behaviour in the world, providing contextual information necessary for planning actions and memory functions such as event reconstruction. A synthetic autobiographical memory system would endow intelligent robotic agents with many essential components of cognition through active compression and storage of historical sensorimotor data in an easily addressable manner. Current approaches neither fulfil these functional requirements, nor build upon recent understanding of predictive coding, deep learning, nor the neurobiology of memory. This position paper highlights desiderata for a modern implementation of synthetic autobiographical memory based on human episodic memory, and proposes that a recently developed model of hippocampal memory could be extended as a generalised model of autobiographical memory. Initial implementation will be targeted at social interaction, where current synthetic autobiographical memory systems have had success.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, J.R.: Act: A simple theory of complex cognition. American Psychologist 51(4), 355 (1996)
Baddeley, A.: Essentials of Human Memory (Classic Edition). Psychology Press (2013)
Bengio, Y.: Learning deep architectures for ai. Foundations and Trends in Machine Learning 2(1), 1–127 (2009)
Bernardo, J.M., Smith, A.F.: Bayesian theory, vol. 405. John Wiley & Sons (2009)
Berntsen, D., Rubin, D.C.: Understanding autobiographical memory: Theories and approaches. Cambridge University Press (2012)
Bird, C.M., Burgess, N.: The hippocampus and memory: insights from spatial processing. Nature Reviews Neuroscience 9(3), 182–194 (2008)
Bryson, A.E., Denham, W.F., Dreyfus, S.E.: Optimal programming problems with inequality constraints. AIAA Journal 1(11), 2544–2550 (1963)
Buzsáki, G., Moser, E.I.: Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nature Neuroscience 16(2), 130–138 (2013)
Byrne, P., Becker, S., Burgess, N.: Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychological Review 114(2), 340 (2007)
Carello, C., Turvey, M.T., Kugler, P.N., Shaw, R.E.: Inadequacies of the computer metaphor. In: Handbook of Cognitive Neuroscience, pp. 229–248 (1984)
Clark, A.: Whatever next? predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences 36(3), 181–204 (2013)
Cohen, M.S., Kosslyn, S.M., Breiter, H.C., DiGirolamo, G.J., Thompson, W.L., Anderson, A., Bookheimer, S., Rosen, B.R., Belliveau, J.: Changes in cortical activity during mental rotation a mapping study using functional mri. Brain 119(1), 89–100 (1996)
Conway, M.A.: Autobiographical memory: An introduction. Open University Press (1990)
Damianou, A.C., Lawrence, N.D.: Deep gaussian processes. arXiv preprint arXiv:1211.0358 (2012)
Daw, N., Courville, A.: The pigeon as particle filter. In: Advances in Neural Information Processing Systems, vol. 20, pp. 369–376 (2008)
Fox, C., Prescott, T.: Hippocampus as unitary coherent particle filter. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2010)
Fox, C., Prescott, T.: Learning in a unitary coherent hippocampus. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part I. LNCS, vol. 6352, pp. 388–394. Springer, Heidelberg (2010)
Fox, C., Stafford, T.: Maximum utility unitary coherent perception vs. the bayesian brain. In: Proceedings of the 34th Annual Conference of the Cognitive Science Society (2012)
Friston, K.: The free-energy principle: a unified brain theory? Nature Reviews Neuroscience 11(2), 127–138 (2010)
Friston, K., Kiebel, S.: Predictive coding under the free-energy principle. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1521), 1211–1221 (2009)
Ghosh, V.E., Gilboa, A.: What is a memory schema? a historical perspective on current neuroscience literature. Neuropsychologia 53, 104–114 (2014)
Hassabis, D., Maguire, E.A.: The construction system of the brain. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1521), 1263–1271 (2009)
Lawrence, N.: Probabilistic non-linear principal component analysis with gaussian process latent variable models. The Journal of Machine Learning Research 6, 1783–1816 (2005)
Lengyel, M., Dayan, P.: Hippocampal contributions to control: The third way. In: Advances in Neural Information Processing Systems, pp. 889–896 (2007)
Lepora, N., Fox, C., Evans, M., Diamond, M., Gurney, K., Prescott, T.: Optimal decision-making in mammals: insights from a robot study of rodent texture discrimination. Journal of The Royal Society Interface 9(72), 1517–1528 (2012)
Lisman, J., Grace, A.A., Duzel, E.: A neohebbian framework for episodic memory; role of dopamine-dependent late ltp. Trends in Neurosciences 34(10), 536–547 (2011)
Marr, D.: Simple memory: a theory for archicortex. Philosophical Transactions of the Royal Society B 262, 23–81 (1971)
McClelland, J.L., McNaughton, B.L., O’Reilly, R.C.: Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychological Review 102(3), 419 (1995)
Miller, G.A.: The cognitive revolution: a historical perspective. Trends in Cognitive Sciences 7(3), 141–144 (2003)
Milner, B., Corkin, S., Teuber, H.L.: Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of hm. Neuropsychologia 6(3), 215–234 (1968)
Nakashiba, T., Cushman, J.D., Pelkey, K.A., Renaudineau, S., Buhl, D.L., McHugh, T.J., Barrera, V.R., Chittajallu, R., Iwamoto, K.S., McBain, C.J., et al.: Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149(1), 188–201 (2012)
Neisser, U., Fivush, R.: The remembering self: Construction and accuracy in the self-narrative, vol. (6). Cambridge University Press (1994)
Patihis, L., Frenda, S.J., LePort, A.K., Petersen, N., Nichols, R.M., Stark, C.E., McGaugh, J.L., Loftus, E.F.: False memories in highly superior autobiographical memory individuals. Proceedings of the National Academy of Sciences 110(52), 20947–20952 (2013)
Paul, R., Rus, D., Newman, P.: How was your day? online visual workspace summaries using incremental clustering in topic space. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 4058–4065. IEEE (2012)
Penny, W.D., Zeidman, P., Burgess, N.: Forward and backward inference in spatial cognition. PLoS Computational Biology 9(12) 9(12), e1003383 (2013)
Petit, M., Lallée, S., Boucher, J.D., Pointeau, G., Cheminade, P., Ognibene, D., Chinellato, E., Pattacini, U., Gori, I., Martinez-Hernandez, U., et al.: The coordinating role of language in real-time multimodal learning of cooperative tasks. IEEE Transactions on Autonomous Mental Development 5(1), 3–17 (2013)
Pointeau, G., Petit, M., Dominey, P.F.: Successive developmental levels of autobiographical memory for learning through social interaction. IEEE Transactions on Autonomous Mental Development (forthcoming)
Pointeau, G., Petit, M., Dominey, P.F.: Embodied simulation based on autobiographical memory. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 240–250. Springer, Heidelberg (2013)
Pouget, A., Beck, J.M., Ma, W.J., Latham, P.E.: Probabilistic brains: knowns and unknowns. Nature Neuroscience 16(9), 1170–1178 (2013)
Preston, A.R., Eichenbaum, H.: Interplay of hippocampus and prefrontal cortex in memory. Current Biology 23(17), R764–R773 (2013)
Rao, R.P., Ballard, D.H.: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience 2(1), 79–87 (1999)
Rennó-Costa, C., Lisman, J.E., Verschure, P.F.: The mechanism of rate remapping in the dentate gyrus. Neuron 68(6), 1051–1058 (2010)
Rochat, P.: Criteria for an ecological self. The Self in Infancy: Theory and Research 112, 17 (1995)
Rubin, D.C.: The basic-systems model of episodic memory. Perspectives on Psychological Science 1(4), 277–311 (2006)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. MIT Press, Cambridge (1988)
Saul, A., Prescott, T., Fox, C.: Scaling up a boltzmann machine model of hippocampus with visual features for mobile robots. In: 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 835–840. IEEE (2011)
Schapiro, A.C., Rogers, T.T., Cordova, N.I., Turk-Browne, N.B., Botvinick, M.M.: Neural representations of events arise from temporal community structure. Nature Neuroscience (2013)
Simoncelli, E.P.: Vision and the statistics of the visual environment. Current Opinion in Neurobiology 13(2), 144–149 (2003)
Spence, J.D.: The memory palace of Matteo Ricci. Penguin Books Harmondsworth (1985)
Srinivasan, M.V., Laughlin, S.B., Dubs, A.: Predictive coding: a fresh view of inhibition in the retina. Proceedings of the Royal Society of London. Series B. Biological Sciences 216(1205), 427–459 (1982)
Taylor, G., Hinton, G., Roweis, S.: Modeling human motion using binary latent variables. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems, vol. 19 (2007)
Tulving, E.: Elements of episodic memory. Oxford Psychology Series (1985)
Wills, T.J., Lever, C., Cacucci, F., Burgess, N., O’Keefe, J.: Attractor dynamics in the hippocampal representation of the local environment. Science 308(5723), 873–876 (2005)
Wood, R., Baxter, P., Belpaeme, T.: A review of long-term memory in natural and synthetic systems. Adaptive Behavior 20(2), 81–103 (2012)
Yamins, D.L., Hong, H., Cadieu, C., DiCarlo, J.J.: Hierarchical modular optimization of convolutional networks achieves representations similar to macaque it and human ventral stream. In: Advances in Neural Information Processing Systems, pp. 3093–3101 (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Evans, M.H., Fox, C.W., Prescott, T.J. (2014). Machines Learning - Towards a New Synthetic Autobiographical Memory. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2014. Lecture Notes in Computer Science(), vol 8608. Springer, Cham. https://doi.org/10.1007/978-3-319-09435-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-09435-9_8
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09434-2
Online ISBN: 978-3-319-09435-9
eBook Packages: Computer ScienceComputer Science (R0)