[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Machines Learning - Towards a New Synthetic Autobiographical Memory

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8608))

Included in the following conference series:

Abstract

Autobiographical memory is the organisation of episodes and contextual information from an individual’s experiences into a coherent narrative, which is key to our sense of self. Formation and recall of autobiographical memories is essential for effective, adaptive behaviour in the world, providing contextual information necessary for planning actions and memory functions such as event reconstruction. A synthetic autobiographical memory system would endow intelligent robotic agents with many essential components of cognition through active compression and storage of historical sensorimotor data in an easily addressable manner. Current approaches neither fulfil these functional requirements, nor build upon recent understanding of predictive coding, deep learning, nor the neurobiology of memory. This position paper highlights desiderata for a modern implementation of synthetic autobiographical memory based on human episodic memory, and proposes that a recently developed model of hippocampal memory could be extended as a generalised model of autobiographical memory. Initial implementation will be targeted at social interaction, where current synthetic autobiographical memory systems have had success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, J.R.: Act: A simple theory of complex cognition. American Psychologist 51(4), 355 (1996)

    Article  Google Scholar 

  2. Baddeley, A.: Essentials of Human Memory (Classic Edition). Psychology Press (2013)

    Google Scholar 

  3. Bengio, Y.: Learning deep architectures for ai. Foundations and Trends in Machine Learning 2(1), 1–127 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bernardo, J.M., Smith, A.F.: Bayesian theory, vol. 405. John Wiley & Sons (2009)

    Google Scholar 

  5. Berntsen, D., Rubin, D.C.: Understanding autobiographical memory: Theories and approaches. Cambridge University Press (2012)

    Google Scholar 

  6. Bird, C.M., Burgess, N.: The hippocampus and memory: insights from spatial processing. Nature Reviews Neuroscience 9(3), 182–194 (2008)

    Article  Google Scholar 

  7. Bryson, A.E., Denham, W.F., Dreyfus, S.E.: Optimal programming problems with inequality constraints. AIAA Journal 1(11), 2544–2550 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  8. Buzsáki, G., Moser, E.I.: Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nature Neuroscience 16(2), 130–138 (2013)

    Article  Google Scholar 

  9. Byrne, P., Becker, S., Burgess, N.: Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychological Review 114(2), 340 (2007)

    Article  Google Scholar 

  10. Carello, C., Turvey, M.T., Kugler, P.N., Shaw, R.E.: Inadequacies of the computer metaphor. In: Handbook of Cognitive Neuroscience, pp. 229–248 (1984)

    Google Scholar 

  11. Clark, A.: Whatever next? predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences 36(3), 181–204 (2013)

    Google Scholar 

  12. Cohen, M.S., Kosslyn, S.M., Breiter, H.C., DiGirolamo, G.J., Thompson, W.L., Anderson, A., Bookheimer, S., Rosen, B.R., Belliveau, J.: Changes in cortical activity during mental rotation a mapping study using functional mri. Brain 119(1), 89–100 (1996)

    Article  Google Scholar 

  13. Conway, M.A.: Autobiographical memory: An introduction. Open University Press (1990)

    Google Scholar 

  14. Damianou, A.C., Lawrence, N.D.: Deep gaussian processes. arXiv preprint arXiv:1211.0358 (2012)

    Google Scholar 

  15. Daw, N., Courville, A.: The pigeon as particle filter. In: Advances in Neural Information Processing Systems, vol. 20, pp. 369–376 (2008)

    Google Scholar 

  16. Fox, C., Prescott, T.: Hippocampus as unitary coherent particle filter. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2010)

    Google Scholar 

  17. Fox, C., Prescott, T.: Learning in a unitary coherent hippocampus. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part I. LNCS, vol. 6352, pp. 388–394. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Fox, C., Stafford, T.: Maximum utility unitary coherent perception vs. the bayesian brain. In: Proceedings of the 34th Annual Conference of the Cognitive Science Society (2012)

    Google Scholar 

  19. Friston, K.: The free-energy principle: a unified brain theory? Nature Reviews Neuroscience 11(2), 127–138 (2010)

    Article  Google Scholar 

  20. Friston, K., Kiebel, S.: Predictive coding under the free-energy principle. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1521), 1211–1221 (2009)

    Article  Google Scholar 

  21. Ghosh, V.E., Gilboa, A.: What is a memory schema? a historical perspective on current neuroscience literature. Neuropsychologia 53, 104–114 (2014)

    Article  Google Scholar 

  22. Hassabis, D., Maguire, E.A.: The construction system of the brain. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1521), 1263–1271 (2009)

    Article  Google Scholar 

  23. Lawrence, N.: Probabilistic non-linear principal component analysis with gaussian process latent variable models. The Journal of Machine Learning Research 6, 1783–1816 (2005)

    MATH  MathSciNet  Google Scholar 

  24. Lengyel, M., Dayan, P.: Hippocampal contributions to control: The third way. In: Advances in Neural Information Processing Systems, pp. 889–896 (2007)

    Google Scholar 

  25. Lepora, N., Fox, C., Evans, M., Diamond, M., Gurney, K., Prescott, T.: Optimal decision-making in mammals: insights from a robot study of rodent texture discrimination. Journal of The Royal Society Interface 9(72), 1517–1528 (2012)

    Article  Google Scholar 

  26. Lisman, J., Grace, A.A., Duzel, E.: A neohebbian framework for episodic memory; role of dopamine-dependent late ltp. Trends in Neurosciences 34(10), 536–547 (2011)

    Article  Google Scholar 

  27. Marr, D.: Simple memory: a theory for archicortex. Philosophical Transactions of the Royal Society B 262, 23–81 (1971)

    Article  Google Scholar 

  28. McClelland, J.L., McNaughton, B.L., O’Reilly, R.C.: Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychological Review 102(3), 419 (1995)

    Article  Google Scholar 

  29. Miller, G.A.: The cognitive revolution: a historical perspective. Trends in Cognitive Sciences 7(3), 141–144 (2003)

    Article  Google Scholar 

  30. Milner, B., Corkin, S., Teuber, H.L.: Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of hm. Neuropsychologia 6(3), 215–234 (1968)

    Article  Google Scholar 

  31. Nakashiba, T., Cushman, J.D., Pelkey, K.A., Renaudineau, S., Buhl, D.L., McHugh, T.J., Barrera, V.R., Chittajallu, R., Iwamoto, K.S., McBain, C.J., et al.: Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149(1), 188–201 (2012)

    Article  Google Scholar 

  32. Neisser, U., Fivush, R.: The remembering self: Construction and accuracy in the self-narrative, vol. (6). Cambridge University Press (1994)

    Google Scholar 

  33. Patihis, L., Frenda, S.J., LePort, A.K., Petersen, N., Nichols, R.M., Stark, C.E., McGaugh, J.L., Loftus, E.F.: False memories in highly superior autobiographical memory individuals. Proceedings of the National Academy of Sciences 110(52), 20947–20952 (2013)

    Article  Google Scholar 

  34. Paul, R., Rus, D., Newman, P.: How was your day? online visual workspace summaries using incremental clustering in topic space. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 4058–4065. IEEE (2012)

    Google Scholar 

  35. Penny, W.D., Zeidman, P., Burgess, N.: Forward and backward inference in spatial cognition. PLoS Computational Biology 9(12) 9(12), e1003383 (2013)

    Google Scholar 

  36. Petit, M., Lallée, S., Boucher, J.D., Pointeau, G., Cheminade, P., Ognibene, D., Chinellato, E., Pattacini, U., Gori, I., Martinez-Hernandez, U., et al.: The coordinating role of language in real-time multimodal learning of cooperative tasks. IEEE Transactions on Autonomous Mental Development 5(1), 3–17 (2013)

    Article  Google Scholar 

  37. Pointeau, G., Petit, M., Dominey, P.F.: Successive developmental levels of autobiographical memory for learning through social interaction. IEEE Transactions on Autonomous Mental Development (forthcoming)

    Google Scholar 

  38. Pointeau, G., Petit, M., Dominey, P.F.: Embodied simulation based on autobiographical memory. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 240–250. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  39. Pouget, A., Beck, J.M., Ma, W.J., Latham, P.E.: Probabilistic brains: knowns and unknowns. Nature Neuroscience 16(9), 1170–1178 (2013)

    Article  Google Scholar 

  40. Preston, A.R., Eichenbaum, H.: Interplay of hippocampus and prefrontal cortex in memory. Current Biology 23(17), R764–R773 (2013)

    Google Scholar 

  41. Rao, R.P., Ballard, D.H.: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience 2(1), 79–87 (1999)

    Article  Google Scholar 

  42. Rennó-Costa, C., Lisman, J.E., Verschure, P.F.: The mechanism of rate remapping in the dentate gyrus. Neuron 68(6), 1051–1058 (2010)

    Article  Google Scholar 

  43. Rochat, P.: Criteria for an ecological self. The Self in Infancy: Theory and Research 112, 17 (1995)

    Article  Google Scholar 

  44. Rubin, D.C.: The basic-systems model of episodic memory. Perspectives on Psychological Science 1(4), 277–311 (2006)

    Article  Google Scholar 

  45. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. MIT Press, Cambridge (1988)

    Google Scholar 

  46. Saul, A., Prescott, T., Fox, C.: Scaling up a boltzmann machine model of hippocampus with visual features for mobile robots. In: 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 835–840. IEEE (2011)

    Google Scholar 

  47. Schapiro, A.C., Rogers, T.T., Cordova, N.I., Turk-Browne, N.B., Botvinick, M.M.: Neural representations of events arise from temporal community structure. Nature Neuroscience (2013)

    Google Scholar 

  48. Simoncelli, E.P.: Vision and the statistics of the visual environment. Current Opinion in Neurobiology 13(2), 144–149 (2003)

    Article  Google Scholar 

  49. Spence, J.D.: The memory palace of Matteo Ricci. Penguin Books Harmondsworth (1985)

    Google Scholar 

  50. Srinivasan, M.V., Laughlin, S.B., Dubs, A.: Predictive coding: a fresh view of inhibition in the retina. Proceedings of the Royal Society of London. Series B. Biological Sciences 216(1205), 427–459 (1982)

    Article  Google Scholar 

  51. Taylor, G., Hinton, G., Roweis, S.: Modeling human motion using binary latent variables. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems, vol. 19 (2007)

    Google Scholar 

  52. Tulving, E.: Elements of episodic memory. Oxford Psychology Series (1985)

    Google Scholar 

  53. Wills, T.J., Lever, C., Cacucci, F., Burgess, N., O’Keefe, J.: Attractor dynamics in the hippocampal representation of the local environment. Science 308(5723), 873–876 (2005)

    Article  Google Scholar 

  54. Wood, R., Baxter, P., Belpaeme, T.: A review of long-term memory in natural and synthetic systems. Adaptive Behavior 20(2), 81–103 (2012)

    Article  Google Scholar 

  55. Yamins, D.L., Hong, H., Cadieu, C., DiCarlo, J.J.: Hierarchical modular optimization of convolutional networks achieves representations similar to macaque it and human ventral stream. In: Advances in Neural Information Processing Systems, pp. 3093–3101 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Evans, M.H., Fox, C.W., Prescott, T.J. (2014). Machines Learning - Towards a New Synthetic Autobiographical Memory. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2014. Lecture Notes in Computer Science(), vol 8608. Springer, Cham. https://doi.org/10.1007/978-3-319-09435-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09435-9_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09434-2

  • Online ISBN: 978-3-319-09435-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics