[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Characteristic-wise Alternative WENO-Z Finite Difference Scheme for Solving the Compressible Multicomponent Non-reactive Flows in the Overestimated Quasi-conservative Form

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The fifth, seventh and ninth order characteristic-wise alternative weighted essentially non-oscillatory (AWENO) finite difference schemes are applied to the fully conservative (FC) form and the overestimated quasi-conservative (OQC) form of the compressible multicomponent flows. Several linear and nonlinear numerical operators such as the linear Lax–Friedrichs operator and linearized nonlinear WENO operator and their mathematical properties are defined in order to build a general mathematical (numerical) framework for identifying the necessary and sufficient conditions required in maintaining the equilibriums of certain physical relevant properties discretely. In the case of OQC form, the AWENO scheme with the modified flux can be rigorously proved to maintain the equilibriums of velocity, pressure and temperature. Furthermore, we also show that the FC form cannot maintain the equilibriums without an additional advection equation of auxiliary variable involving the specific heat ratio. Extensive one- and two-dimensional classical benchmark problems, such as the moving material interface problem, multifluid shock-density interaction problem and shock-R22-bubble interaction problem, verify the theoretical results and also show that the AWENO schemes demonstrate less dissipation error and higher resolution than the classical WENO-Z scheme in the splitting form (Nonomura and Fujii in J Comput Phys 340:358–388, 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125(1), 150–160 (1996)

    Article  MathSciNet  Google Scholar 

  2. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)

    Article  MathSciNet  Google Scholar 

  3. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230(5), 1766–1792 (2011)

    Article  MathSciNet  Google Scholar 

  4. Deng, X.-G., Maekawa, H.: Compact high-order accurate nonlinear schemes. J. Comput. Phys. 130(1), 77–91 (1997)

    Article  MathSciNet  Google Scholar 

  5. Don, W.S., Borges, R.: Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. J. Comput. Phys. 250, 347–372 (2013)

    Article  MathSciNet  Google Scholar 

  6. Don, W.S., Li, P., Wang, K.Y., Gao, Z.: Improved symmetry property of high order weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Adv. Appl. Math. Mech. 10(6), 1418–1439 (2018)

    Article  MathSciNet  Google Scholar 

  7. Fleischmann, N., Adami, S., Adams, N.A.: Numerical symmetry-preserving techniques for low-dissipation shcok-capturing schemes. Comput. Fluids 189, 94–107 (2019)

    Article  MathSciNet  Google Scholar 

  8. Gao, Z., Fang, L.-L., Wang, B.-S., Wang, Y.-H., Don, W.S.: Seventh and ninth orders alternative WENO finite difference schemes for hyperbolic conservation laws. Comput. Fluids, 2019, Under Revision

  9. Harlow, F., Amsden, A.: Fluid Dynamics, Monograph LA-4700. Los Alamos National Laboratory, Los Alamos (1971)

    Google Scholar 

  10. He, Z.-W., Li, L., Zhang, Y.-S., Tian, B.-L.: Consistent implementation of characteristic flux-split based finite difference method for compressible multi-material gas flows. Comput. Fluids 168, 190–200 (2018)

    Article  MathSciNet  Google Scholar 

  11. He, Z.-W., Zhang, Y.-S., Li, X.-L., Li, L., Tian, B.-L.: Preventing numerical oscillations in the flux-split based finite difference method for compressible flows with discontinuities. J. Comput. Phys. 300, 269–287 (2015)

    Article  MathSciNet  Google Scholar 

  12. He, Z.-W., Zhang, Y.-S., Li, X.-L., Tian, B.-L.: Preventing numerical oscillations in the flux-split based finite difference method for compressible flows with discontinuities, II. Int. J. Numer. Methods Fluids 80(5), 306–316 (2016)

    Article  MathSciNet  Google Scholar 

  13. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO Schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  Google Scholar 

  14. Jiang, Y., Shu, C.-W., Zhang, M.-P.: An alternative formulation of finite difference weighted ENO schemes with Lax–Wendroff time discretization for conservation laws. SIAM J. Sci. Comput. 35(2), A1137–A1160 (2013)

    Article  MathSciNet  Google Scholar 

  15. Jiang, Y., Shu, C.-W., Zhang, M.: Free-stream preserving finite difference schemes on curvilinear meshes. Methods Appl. Anal. 21(1), 1–30 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys. 219(2), 715–732 (2006)

    Article  MathSciNet  Google Scholar 

  17. Johnsen, E., Ham, F.: Preventing numerical errors generated by interface-capturing schemes in compressible multi-material flows. J. Comput. Phys. 231(17), 5705–5717 (2012)

    Article  MathSciNet  Google Scholar 

  18. Liu, H.-X.: A numerical study of the performance of alternative weighted ENO methods based on various numerical fluxes for conservation law. Appl. Math. Comput. 296, 182–197 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Movahed, P., Johnsen, E.: A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer-Meshkov instability. J. Comput. Phys. 239, 166–186 (2013)

    Article  MathSciNet  Google Scholar 

  20. Nonomura, T., Fujii, K.: Characteristic finite-difference WENO scheme for multicomponent compressible fluid analysis: Overestimated quasi-conservative formulation maintaining equilibruims of velocity, pressure, and temperature. J. Comput. Phys. 340, 358–388 (2017)

    Article  MathSciNet  Google Scholar 

  21. Nonomura, T., Iizukab, N., Fujii, K.: Freestream and vortex preservation properties of high-oreder WENO and WCNS on curvilinear grids. Comput. Fluids 39(2), 197–214 (2010)

    Article  MathSciNet  Google Scholar 

  22. Nonomura, T., Morizawa, S., Terashima, H., Obayashi, S., Fujii, K.: Numerical (error) issues on compressible multicomponent flows using a high-order differencing scheme: weighted compact nonlinear scheme. J. Comput. Phys. 231(8), 3181–3210 (2012)

    Article  MathSciNet  Google Scholar 

  23. Qiu, J.-X., Shu, C.-W.: On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes. J. Comput. Phys. 183, 187–209 (2002)

    Article  MathSciNet  Google Scholar 

  24. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  25. Shyue, K.-M.: An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 142(1), 208–242 (1998)

    Article  MathSciNet  Google Scholar 

  26. Wang, B.-S., Li, P., Gao, Z., Don, W.S.: An improved fifth order alternative WENO-Z finite difference scheme for hyperbolic conservation laws. J. Comput. Phys. 374, 469–477 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the discussion with Professor Baolin Tian and Zhiwei He of Institute of Applied Physics and Computational Mathematics, China, and Professor Taku Nonomura of Institute of Space and Astronautical Science, Japan. The authors are also grateful to Li-Li Fang for providing the basis of the AWENO schemes in this work. The authors would like to acknowledge the funding support of this research by the National Natural Science Foundation of China (11871443), Shandong Provincial Natural Science Foundation (ZR2017MA016). The author (Don) also likes to thank the Ocean University of China for providing the startup funding (201712011) that is used in supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Shan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A  Eigensystem of Fully Conservative Form

For the fully conservative form, the left and right eigenvectors of the Jacobian \(\mathbf {A}=\frac{\partial \mathbf {F}}{\partial \mathbf {Q}}\) of the flux \(\mathbf {F(\mathbf {Q})}\) are

$$\begin{aligned} \begin{aligned} \mathbf {L}=&\left[ \begin{array}{c} \mathbf {l_{1}}\\ \mathbf {l_{2}}\\ \mathbf {l_{3}}\\ \mathbf {l_{4}} \end{array} \right] = \left[ \begin{array}{cccc} \frac{1}{2}\left( b_{2}+b_{4}+\frac{u}{c}\right) &{} \quad -\frac{1}{2}\left( b_{1}u+\frac{1}{c}\right) &{} \quad \frac{1}{2}b_{1} &{} \quad -\frac{1}{2}b_{3}\\ 1-b_{2}-b_{4} &{} \quad b_{1}u &{} \quad -b_{1} &{} \quad b_{3} \\ \frac{1}{2}\left( b_{2}+b_{4}-\frac{u}{c}\right) &{} \quad -\frac{1}{2}\left( b_{1}u-\frac{1}{c}\right) &{} \quad \frac{1}{2}b_{1} &{} \quad -\frac{1}{2}b_{3}\\ -Y_{1} &{} \quad 0 &{} \quad 0 &{} \quad 1 \end{array} \right] ,\\ \mathbf {R}=&\left[ \mathbf {r_{1}},~ \mathbf {r_{2}},~ \mathbf {r_{3}},~ \mathbf {r_{4}} \right] = \left[ \begin{array}{cccc} 1 &{} \quad 1 &{} \quad 1 &{} \quad 0\\ u-c &{} \quad u &{} \quad u+c &{} \quad 0\\ H-uc &{} \quad \frac{1}{2}u^{2} &{} \quad H+uc &{} \quad \frac{1}{\rho }\frac{\partial e}{\partial Y_{1}}\\ Y_{1} &{} \quad Y_{1} &{} \quad Y_{1} &{} \quad 1 \end{array} \right] , \end{aligned} \end{aligned}$$
(48)

and their corresponding eigenvalues are \({{\varvec{\Lambda }}}=\left[ \begin{array}{cccc} \lambda _{1},&\lambda _{2},&\lambda _{3},&\lambda _{4} \end{array} \right] = \left[ \begin{array}{cccc} u-c,&u,&u+c,&u \end{array} \right] ,\) where the sound speed c, the enthalpy H, \(b_{1}\), \(b_{2}\), \(b_{3}\), \(b_{4}\) and \(\frac{\partial e}{\partial Y_{1}}\) are

$$\begin{aligned} c= & {} \sqrt{\frac{\gamma P}{\rho }},~H=\Gamma c^2+\frac{u^2}{2},~ b_{1}= \frac{1}{\Gamma c^{2}},~b_{2}= \frac{u^{2}b_{1}}{2},~b_{3}= b_{1}\frac{1}{\rho }\frac{\partial e}{\partial Y_{1}},~b_{4}= b_{3}Y_{1}, \end{aligned}$$
(49)
$$\begin{aligned} \frac{\partial e}{\partial Y_{1}}= & {} PM\left( \frac{\Gamma _1 - \Gamma }{M_1} - \frac{\Gamma _0-\Gamma }{M_0}\right) ~~~ \text {with}~~~\Gamma _m = \frac{1}{\gamma _m - 1},~m = 0,1. \end{aligned}$$
(50)

B  Eigensystem of Overestimated Quasi-Conservative Form

In the overestimated quasi-conservative form, it is impossible to define the flux Jacobian since the system (7) is no longer expressed in a conservative form and hence, the corresponding eigensystem cannot be derived easily as in the FC form. Therefore, the left and right eigenvectors are evaluated via the modified flux Jacobian \(\mathbf {B}=\mathbf {M}\frac{\partial \mathbf {F}}{\partial \mathbf {Q}}\) and they are

$$\begin{aligned} \begin{aligned} \mathbf {L}=&\left[ \begin{array}{c} \mathbf {l_{1}}\\ \mathbf {l_{2}}\\ \mathbf {l_{3}}\\ \mathbf {l_{4}}\\ \mathbf {l_{5}}\\ \end{array} \right] = \left[ \begin{array}{ccccc} \frac{1}{2}\left( b_{2}+\frac{u}{c}\right) &{} \quad -\frac{1}{2}\left( b_{1}u+\frac{1}{c}\right) &{} \frac{1}{2}b_{1} &{} \quad 0&{} \quad -\frac{1}{2}b_{1}P\\ 1-b_{2}&{} \quad b_{1}u &{} \quad -b_{1} &{} \quad 0 &{} \quad b_{1}P \\ \frac{1}{2}\left( b_{2}-\frac{u}{c}\right) &{} \quad -\frac{1}{2}\left( b_{1}u-\frac{1}{c}\right) &{} \frac{1}{2}b_{1} &{}0 \quad &{} -\frac{1}{2}b_{1}P\\ -Y_{1} &{} \quad 0 &{} \quad 0 &{}1 &{} \quad 0\\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 1 \end{array} \right] ,\\ \mathbf {R}=&\left[ \mathbf {r_{1}},~ \mathbf {r_{2}},~ \mathbf {r_{3}},~ \mathbf {r_{4}},~ \mathbf {r_{5}} \right] = \left[ \begin{array}{ccccc} 1 &{} \quad 1 &{} \quad 1 &{} \quad 0 &{} \quad 0\\ u-c &{} \quad u &{} \quad u+c &{} \quad 0 &{} \quad 0\\ H-uc &{} \quad \frac{1}{2}u^{2} &{} \quad H+uc &{} \quad 0 &{} \quad P\\ Y_{1} &{} \quad Y_{1} &{} \quad Y_{1} &{} \quad 1 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 1 \\ \end{array} \right] , \end{aligned} \end{aligned}$$
(51)

and their corresponding eigenvalues are \({\varvec{\Lambda }}= {[}\lambda _1,~\lambda _2,~\lambda _3,~\lambda _4,~\lambda _5{]} = {[}u-c,~u,~u+c,~u,~u{]}\).

C  The Coefficients \(d_{n}^{2k}\) for the Different Orders of Approximation in the AWENO Scheme

Table 3 The values of \(d_{n}^{2k}\times c_{2k}\) for the fifth order \((r=3)\), seventh order \((r=4)\) and ninth order \((r=5)\) AWENO schemes.

D  The Derivations of (23) and (25)

In this section, we give the derivations of (23) and (25) in a general case. After that, the results of (23) and (25) in the specific case for constant u and P are given.

We denote a vector \(\tilde{\mathbf {Q}}_{j+l}\), for any fixed grid point j,

$$\begin{aligned} \tilde{\mathbf {Q}}_{j+l}=\left[ q_1,~ q_2,~q_3,~q_4,~q_5\right] ^{T}_{j+l},~l=-(r-1),\ldots ,r, \end{aligned}$$
(52)

where \(q_i=\tilde{\mathbf {l}}_{i}\mathbf {Q}_{j+l},~i=1,\ldots ,5\) are the characteristic variables.

By substituting \(\tilde{b}_{2}= \frac{\tilde{u}^{2}\tilde{b}_{1}}{2}\) and the equation of state, \(\rho e =\Gamma P+\frac{1}{2}\rho u^{2}\) into \(q_i=\tilde{\mathbf {l}}_{i}\mathbf {Q}_{j+l}\), and by defining the operator \(\delta f=f-\tilde{f}\), one has

$$\begin{aligned} \left[ \begin{array}{c} q_1\\ q_2\\ q_3\\ q_4\\ q_5 \end{array}\right] =\left[ \begin{array}{c} -\frac{1}{2}\frac{\rho }{\tilde{c}}\delta u+\frac{1}{4}\tilde{b}_{1}\rho (\delta u)^2+\frac{1}{2}\tilde{b}_{1}\Gamma \delta P\\ \rho -\frac{1}{2}\tilde{b}_{1}\rho (\delta u)^2-\tilde{b}_{1}\Gamma \delta P\\ \frac{1}{2}\frac{\rho }{\tilde{c}}\delta u+\frac{1}{4}\tilde{b}_{1}\rho (\delta u)^2+\frac{1}{2}\tilde{b}_{1}\Gamma \delta P\\ \rho \delta Y_1\\ \Gamma \end{array}\right] , \end{aligned}$$
(53)

where \(\tilde{b}_{1}\) and \(\tilde{c}\) can be found in (49).

The WENO reconstructed conservative variables at the cell boundary \(\mathbf {Q}^{\pm }_{j+\frac{1}{2}}\) are calculated as follows

$$\begin{aligned} \mathbf {Q}^{\pm }_{j+\frac{1}{2}}=\tilde{\mathbf {R}}\tilde{\mathbf {Q}}^{\pm }_{j+\frac{1}{2}} = \left[ \begin{array}{c} q_1+q_2+q_3\\ (\tilde{u}-\tilde{c})q_1+\tilde{u}q_2+(\tilde{u}+\tilde{c})q_3 \\ (\tilde{H}-\tilde{u}\tilde{c})q_1+\frac{1}{2}\tilde{u}^{2}q_2+(\tilde{H}+\tilde{u}\tilde{c})q_3+\tilde{P}q_5\\ \tilde{Y}_{1}q_1+\tilde{Y}_{1}q_2+\tilde{Y}_{1}q_3+q_4\\ q_5 \end{array} \right] ^{\pm }_{j+\frac{1}{2}}. \end{aligned}$$
(54)

1.1 D.1  Special Case for Constant Velocity u and Pressure P

In the case of constant u and P, one has \(\delta u=\delta P=0\), and

$$\begin{aligned} \begin{aligned} \tilde{\mathbf {Q}}_{j+l}&~=\left[ 0,~ \rho ,~0,~\rho \delta Y_1,~\Gamma \right] ^{T}_{j+l},~l=-(r-1),\ldots ,r,\\ \tilde{\mathbf {Q}}^{\pm }_{j+\frac{1}{2}}&~=\left[ \begin{array}{c} q_1\\ q_2\\ q_3\\ q_4\\ q_5 \end{array} \right] ^{\pm }_{j+\frac{1}{2}}=W^{\pm }_{j+\frac{1}{2}}\left[ \begin{array}{c} q_1\\ q_2\\ q_3\\ q_4\\ q_5 \end{array}\right] =\left[ \begin{array}{l} 0\\ W^{\pm }_{j+\frac{1}{2}}\left[ \rho \right] \\ 0\\ W^{\pm }_{j+\frac{1}{2}}\left[ \rho \delta Y_1\right] \\ W^{\pm }_{j+\frac{1}{2}}\left[ \Gamma \right] \end{array}\right] ,\\ \mathbf {Q}^{\pm }_{j+\frac{1}{2}}&=\left[ \begin{array}{l} q_{2}\\ uq_{2}\\ \frac{1}{2}u^{2}q_{2}+Pq_{5}\\ \tilde{Y}_{1}q_{2}+q_{4}\\ q_{5} \end{array} \right] _{j+\frac{1}{2}}^{\pm }. \end{aligned} \end{aligned}$$
(55)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Don, W.S., Li, DM., Gao, Z. et al. A Characteristic-wise Alternative WENO-Z Finite Difference Scheme for Solving the Compressible Multicomponent Non-reactive Flows in the Overestimated Quasi-conservative Form. J Sci Comput 82, 27 (2020). https://doi.org/10.1007/s10915-020-01126-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01126-y

Keywords

Navigation