[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Quasi-Conservative Alternative WENO Finite Difference Scheme for Solving Compressible Multicomponent Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We construct a quasi-conservative alternative WENO finite difference scheme respectively coupled with the global Lax-Friedrichs (AWENO-GLF) and the contact restored Harten-Lax-van Leer approximate Riemann solver (AWENO-HLLC) for solving compressible multicomponent flows. The mass equation, the momentum equation, and the energy equation are discretized by a fully conservative AWENO-GLF or AWENO-HLLC finite difference scheme from which a consistent nonconservative discretization of the topological equation is derived according to the velocity and pressure equilibrium principle proposed by Agrall (J Comput Phys 125:150–160, 1996). We prove that, coupling with the constructed scheme, WENO interpolations with common weights for conservative variables or standard WENO interpolations with independent weights for primitive quantities can maintain velocity and pressure equilibrium. Numerical examples demonstrate that AWENO-HLLC scheme is not only less dissipative but also less oscillatory than classical WENO-GLF scheme for compressible multicomponent flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data sets produced in the present study can be obtained from the corresponding author upon reasonable request.

Code availability

The custom codes generated in the course of this study can be obtained from the corresponding author on reasonable request.

References

  1. Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125, 150–160 (1996)

    Article  MathSciNet  Google Scholar 

  2. Allaire, G., Clerc, S., Kokh, S.: A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181, 577–616 (2002)

    Article  MathSciNet  Google Scholar 

  3. Baer, M.R., Nunziato, J.W.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiphas. Flow 12, 861–889 (1986)

    Article  Google Scholar 

  4. Batten, P., Clarke, N., Lambert, C., Causon, D.M.: On the choice of wavespeeds for the HLLC Riemann solver. SIAM J. Sci. Comput. 18, 1553–1570 (1997)

    Article  MathSciNet  Google Scholar 

  5. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    Article  MathSciNet  Google Scholar 

  6. Brouillette, M.: The Richtmyer-Meshkov instability. Annu. Rev. Fluid Mech. 34, 445–468 (2002)

    Article  MathSciNet  Google Scholar 

  7. Cheng, J., Zhang, F., Liu, T.G.: A quasi-conservative discontinuous Galerkin method for solving five equation model of compressible two-medium flows. J. Sci. Comput. 85, 12 (2020)

    Article  MathSciNet  Google Scholar 

  8. Deng, X.G., Zhang, H.X.: Developing high-order weighted compact nonlinear schemes. J. Comput. Phys. 165, 22–44 (2000)

    Article  MathSciNet  Google Scholar 

  9. Don, W.S., Li, D.M., Gao, Z., Wang, B.S.: A characteristic-wise alternative WENO-Z finite difference scheme for solving the compressible multicomponent non-reactive flows in the overestimated quasi-conservative form. J. Sci. Comput. 82, 27 (2020)

    Article  MathSciNet  Google Scholar 

  10. Don, W.S., Li, R., Wang, B.S., Wang, Y.H.: A novel and robust scale-invariant WENO scheme for hyperbolic conservation laws. J. Comput. Phys. 448, 110724 (2022)

    Article  MathSciNet  Google Scholar 

  11. Einfeldt, B., Munz, C.D., Roe, P.L., Sjögreen, B.: On Godunov-type methods near low densities. J. Comput. Phys. 92, 273–295 (1991)

    Article  MathSciNet  Google Scholar 

  12. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999)

    Article  MathSciNet  Google Scholar 

  13. Gu, Y.G., Gao, Z., Hu, G.H., Li, P., Wang, L.F.: High order finite difference alternative WENO scheme for multi-component flows. J. Sci. Comput. 89, 1–24 (2021)

    Article  MathSciNet  Google Scholar 

  14. Gu, Y.G., Gao, Z., Hu, G.H., Li, P., Wang, L.F.: A robust high order alternative WENO scheme for the five-equation model. J. Sci. Comput. 88, 12 (2021)

    Article  MathSciNet  Google Scholar 

  15. He, Z.W., Li, L., Zhang, Y.S., Tian, B.L.: Consistent implementation of characteristic flux-split based finite difference method for compressible multi-material gas flows. Comput. Fluids 168, 190–200 (2018)

    Article  MathSciNet  Google Scholar 

  16. He, Z.W., Zhang, Y.S., Li, X.L., Li, L., Tian, B.L.: Preventing numerical oscillations in the flux-split based finite difference method for compressible flows with discontinuities. J. Comput. Phys. 300, 269–287 (2015)

    Article  MathSciNet  Google Scholar 

  17. He, Z.W., Liu, H.P., Li, L.: Generic five-equation model for compressible multi-material flows and its corresponding high-fidelity numerical algorithms. J. Comput. Phys. 487, 112154 (2023)

    Article  MathSciNet  Google Scholar 

  18. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    Article  Google Scholar 

  19. Hu, X.Y., Khoo, B.C.: An interface interaction method for compressible multifluids. J. Comput. Phys. 198, 35–64 (2004)

    Article  Google Scholar 

  20. Hu, X.Y., Khoo, B.C., Adams, N.A., Huang, F.L.: A conservative interface method for compressible flows. J. Comput. Phys. 219, 553–578 (2006)

    Article  MathSciNet  Google Scholar 

  21. Jiang, Y., Shu, C.-W., Zhang, M.P.: An alternative formulation of finite difference weighted ENO schemes with Lax-Wendroff time discretization for conservation laws. SIAM J. Sic. Comput. 35, A1137–A1160 (2013)

    Article  MathSciNet  Google Scholar 

  22. Jiang, G.S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  Google Scholar 

  23. Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys. 219, 715–732 (2006)

    Article  MathSciNet  Google Scholar 

  24. Johnsen, E., Ham, F.: Preventing numerical errors generated by interface-capturing schemes in compressible multi-material flows. J. Comput. Phys. 231, 5705–5717 (2012)

    Article  MathSciNet  Google Scholar 

  25. Karni, S.: Multicomponent flow calculations by a consistent primitive algorithm. J. Comput. Phys. 112, 31–43 (1994)

    Article  MathSciNet  Google Scholar 

  26. Murrone, A., Guillard, H.: A five equation reduced model for compressible two phase flow problems. J. Comput. Phys. 202, 664–698 (2004)

    Article  MathSciNet  Google Scholar 

  27. Nonomura, T., Morizawa, S., Terashima, H., Obayashi, S., Fujii, K.: Numerical (error) issues on compressible multicomponent flows using a high-order differencing scheme: weighted compact nonlinear scheme. J. Comput. Phys. 231, 3181–3210 (2012)

    Article  MathSciNet  Google Scholar 

  28. Saurel, R., Abgrall, R.: A simple method for compressible multifluid flows. SIAM J. Sci. Comput. 21, 1115–1145 (1999)

    Article  MathSciNet  Google Scholar 

  29. Sharp, D.H.: An overview of Rayleigh-Taylor instability. Phys. D 12, 3–18 (1984)

    Article  Google Scholar 

  30. Shen, H., Wen, C.Y., Parsani, M., Shu, C.-W.: Maximum-principle-satisfying space-time conservation element and solution element scheme applied to compressible multifluids. J. Comput. Phys. 330, 668–692 (2017)

    Article  MathSciNet  Google Scholar 

  31. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  32. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MathSciNet  Google Scholar 

  33. Shyue, K.M.: An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys. 142, 208–242 (1998)

    Article  MathSciNet  Google Scholar 

  34. Shyue, K.M.: A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Gr\(\ddot{u}\)neisen equation of state. J. Comput. Phys. 171, 678–707 (2001)

    Article  MathSciNet  Google Scholar 

  35. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag, Berlin (1997)

    Book  Google Scholar 

  36. Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994)

    Article  Google Scholar 

  37. Wang, B.S., Li, P., Gao, Z., Don, W.S.: An improved fifth order alternative WENO-Z finite difference scheme for hyperbolic conservation laws. J. Comput. Phys. 374, 469–477 (2018)

    Article  MathSciNet  Google Scholar 

  38. Wang, B.S., Don, W.S., Garg, N.K., Kurganov, A.: Fifth-order A-WENO finite-difference schemes based on a new adaptive diffusion central numerical flux. SIAM J. Sci. Comput. 42, A3932–A3956 (2020)

    Article  MathSciNet  Google Scholar 

  39. Zheng, F., Shu, C.-W., Qiu, J.X.: A high order conservative finite difference scheme for compressible two-medium flows. J. Comput. Phys. 445, 110597 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was partially supported by the National Natural Science Foundation of China (Contract Nos. 11901602 and 62231016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Shen.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Calculation of common weights

Appendix: Calculation of common weights

The common weights \(\omega _{k}(com)(k=0,1,2)\) are defined as follows [16]:

  1. (1)

    Define the special smooth factor \(\tilde{\beta }(q)\) for the variable q,

    $$\begin{aligned} \begin{aligned} \tilde{\beta }(q)=\frac{\sum _{k=0}^{2}(\beta _{k} (q)+\varepsilon )}{min(\beta _{0}(q), \beta _{1}(q),\beta _{2}(q))+\varepsilon }, \end{aligned} \end{aligned}$$
    (56)

    where \(\beta _k(q)\) (\(k=0,1,2\)) are calculated by (19), and \(\varepsilon \) is an adaptive number defined as

    $$\begin{aligned} \begin{aligned} \varepsilon =\left\{ \begin{array}{ll} \varepsilon _{max} &{} \quad \tau _{5}\le S_{min} \\ \varepsilon _{min} &{} \quad \tau _{5}\ge S_{max} \\ \frac{\varepsilon _{min}-\varepsilon _{max}}{S_{max}-S_{min}} (\tau _{5}-S_{min})+\varepsilon _{max} &{} \quad otherwise, \end{array} \right. \end{aligned} \end{aligned}$$
    (57)

    where \(\varepsilon _{min}=10^{-6}\), \(\varepsilon _{max}=10^{-2}\), \(S_{min}=10^{-3}\), and \(S_{max}=10^{-1}\). \(\tau _{5}=|\beta _{2}(q)-\beta _{0}(q)|\) is the 5th-order global smoothness indicator used in WENO-Z scheme [5].

  2. (2)

    Calculate \(\tilde{\beta }(\alpha ), \tilde{\beta }(\rho )\), and \(\tilde{\beta }(\rho E)\). Then select the variable \(\chi \) from \(\{\alpha ,\rho ,\rho E\}\) with the maximum smooth factor \(\tilde{\beta }\).

  3. (3)

    The common weights are calculated as

    $$\begin{aligned} \begin{aligned} \tilde{a}_{k}=\frac{d_{k}}{(\beta _{k}(\chi )+\varepsilon )^{2}},\ \ \ \omega _{k}(com)=\frac{\tilde{a}_{k}}{\sum _{s=0}^{2}\tilde{a}_{s}}, \end{aligned} \end{aligned}$$
    (58)

    where \(d_{k}\) are optimal linear weights and \(\varepsilon \) is set as shown in (57).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Shen, H. & He, Z. A Quasi-Conservative Alternative WENO Finite Difference Scheme for Solving Compressible Multicomponent Flows. J Sci Comput 100, 87 (2024). https://doi.org/10.1007/s10915-024-02645-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02645-8

Keywords