[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Automatic and interactive evolution of vector graphics images with genetic algorithms

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Vector graphics are popular in illustration and graphic design. Images are composed of discrete geometric shapes, such as circles, squares, and lines. The generation of vector images by evolutionary computation techniques, however, has been given little attention. JNetic is an implementation of a comprehensive evolutionary vector graphics tool. Vector primitives available range from simple geometric shapes (circles, polygons) to spline-based paint strokes. JNetic supports automatic and user-guided evolution, chromosome editing, and high-detail masks. Automatic evolution involves measuring the pixel-by-pixel colour distance between a candidate and target image. Masks can be painted over areas of the target image, which help reproduce the high-detail features within those areas. By creative selection of primitives and colour schemes, stylized interpretations of target images are produced. The system has been successfully used by the authors as a creative tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bachelier, G.: Embedding of pixel-based evolutionary algorithms in my global art process. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution. Springer, Berlin (2008)

    Google Scholar 

  2. Barile, P., Ciesielski, V., Trist, K., Berry, M.: Animated drawings rendered by genetic programming. In: Proc. GECCO 2009. ACM Press, New York (2009)

    Google Scholar 

  3. Bentley, P., Corne, D.W.: Creative Evolutionary Systems. Morgan Kaufmann, San Mateo (2002)

    Google Scholar 

  4. Bergen, S., Ross, B.J.: Evolutionary art using summed multi-objective ranks. In: Riolo, R., McConaghy, T., Vladislavleva, E. (eds.) Genetic Programming—Theory and Practice VIII. Springer, Berlin (2010)

    Google Scholar 

  5. Boudreau, T., Jesse, G., Greene, S., Woehr, J., Spurlin, V.: NetBeans: The Definitive Guide. O’Reilly, Farnham (2002)

    Google Scholar 

  6. Buckley, R.: Parallelohedra and uniform colour quanitzation. In: Paeth, A.W. (ed.) Graphics Gems, pp. 65–71. Academic Press, New York (1995)

    Google Scholar 

  7. Burton, A.R., Vladimirova, T.: Generation of musical sequences with genetic techniques. Comput. Music J. 23(4), 59–73 (1999)

    Article  Google Scholar 

  8. Dawkins, R.: The Blind Watchmaker. WW Norton, New York (1996)

    Google Scholar 

  9. Dorin, A.: Aesthetic fitness and artificial evolution for the selection of imagery from the mythical infinite library. In: Advances in Artificial Life—Proc. 6th European Conference on Artificial Life, pp. 659–668. Springer, Berlin (2001)

    Google Scholar 

  10. Dorin, A.: Artificial life, death, and epidemics in evolutionary, generative, electronic art. In: Applications of Evolutionary Computing: EvoWorkShops 2005, pp. 448–457. Springer, Berlin (2005)

    Chapter  Google Scholar 

  11. Ebert, D.S., Musgrave, F.K., Peachey, D., Perlin, K., Worley, S.: Texturing and Modeling: A Procedural Approach. Academic Press, New York (1994)

    Google Scholar 

  12. Eiben, A.E.: Evolutionary reproduction of Dutch masters: The Mondriaan and Escher evolvers. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution. Springer, Berlin (2008)

    Google Scholar 

  13. Elliot, J., Eckstein, R., Loy, M., Wood, D., Cole, B.: Java Swing (2e). O’Reilly, Farnham (2002)

    Google Scholar 

  14. Frowd, C.D., Hancock, P.J.B.: Evolving human faces. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution. Springer, Berlin (2008)

    Google Scholar 

  15. Gervautz, M., Purgathofer, W.: A simple method for colour quantization: octree quantization. In: Glassner, A.S. (ed.) Graphics Gems, pp. 287–293. Academic Press, New York (1990)

    Google Scholar 

  16. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, Reading (1989)

    MATH  Google Scholar 

  17. Graf, J., Banzhaf, W.: Interactive evolution of images. In: Proc. Intl. Conf. on Evolutionary Programming, pp. 53–65 (1995)

    Google Scholar 

  18. Greenfield, G.: Evolving expressions and art by choice. Leonardo 33(2), 93–99 (2000)

    Article  Google Scholar 

  19. Greenfield, G.: Evolving aesthetic images using multiobjective optimization. In: Proc. CEC 2003, pp. 1903–1909 (2003)

    Google Scholar 

  20. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1992)

    Google Scholar 

  21. Ibrahim, A.E.M.: GenShade: an evolutionary approach to automatic and interactive procedural texture generation. PhD thesis, Texas A&M University (December 1998)

  22. IllustratorWorld. http://www.illustratorworld.com (2011). Last accessed Jan 26, 2011

  23. Jackson, H.: Toward a symbiotic coevolutionary approach to architecture. In: Bentley, P.J., Corne, D.W. (eds.) Creative Evolutionary Systems, pp. 299–313. Morgan Kaufmann, San Mateo (2002)

    Chapter  Google Scholar 

  24. Klawonn, F.: Introduction to Computer Graphics: Using Java 2D and 3D. Springer, Berlin (2008)

    Book  Google Scholar 

  25. Lewis, M.: Aesthetic evolutionary design with data flow networks. In: Proc. Generative Art 2000 (2000)

    Google Scholar 

  26. Machado, P., Cardoso, A.: Computing aesthetics. In: Proc. XIVth Brazilian Symposium on AI, pp. 239–249. Springer, Berlin (1998)

    Google Scholar 

  27. Neufeld, C., Ross, B., Ralph, W.: The evolution of artistic filters. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution. Springer, Berlin (2008)

    Google Scholar 

  28. O’Neill, M., Swafford, J.M., McDermott, J., Byrne, J., Brabazon, A., Shotton, E., McNally, C., Hemberg, M.: Shape grammars and grammatical evolution for evolutionary design. In: Proc. GECCO’09, pp. 1035–1042. ACM, New York (2009)

    Google Scholar 

  29. Romero, J., Machado, P.: The Art of Artificial Evolution. Springer, Berlin (2008)

    Book  Google Scholar 

  30. Rooke, S.: Eons of genetically evolved algorithmic images. In: Bentley, P.J., Corne, D.W. (eds.) Creative Evolutionary Systems, pp. 330–365. Morgan Kaufmann, San Mateo (2002)

    Google Scholar 

  31. Ross, B.J., Ralph, W., Zong, H.: Evolutionary image synthesis using a model of aesthetics. In: CEC 2006, July 2006

    Google Scholar 

  32. Sims, K.: Interactive evolution of equations for procedural models. Vis. Comput. 9, 466–476 (1993)

    Article  Google Scholar 

  33. Sun, H., Liang, L., Wen, F., Shum, H.-Y.: Image vectorization using optimized gradient meshes. ACM Trans. Graph. 26(3) (2007)

  34. Svangard, N., Nordin, P.: Automated aesthetic selection of evolutionary art by distance based classification of genomes and phenomes using the universal similarity metric. In: Applications of Evolutionary Computing: EvoWorkshops 2004. LNCS, vol. 3005, pp. 447–456. Springer, Berlin (2004)

    Chapter  Google Scholar 

  35. Swaminarayan, S., Prasad, L.: Rapid automated polygonal image decomposition. In: Proc. 35th Applied Imagery and Pattern Recognition Workshop, pp. 28–33 (2006)

    Google Scholar 

  36. Todd, S., Latham, W.: Evolutionary Art and Computers. Academic Press, New York (1992)

    MATH  Google Scholar 

  37. Weller, C.: Generation of vector-based graphics from existing bitmap images by means of the genetic algorithm (2002). Last accessed April 28, 2009

  38. Whitelaw, M.: Breeding aesthetic objects: Art and artificial evolution. In: Bentley, P., Corne, D.W. (eds.) Creative Evolutionary Systems, pp. 129–145. Morgan Kaufmann, San Mateo (2002)

    Chapter  Google Scholar 

  39. Wiens, A.L., Ross, B.J.: Gentropy: Evolutionary 2D texture generation. Comput. Graph. J. 26(1), 75–88 (2002)

    Article  Google Scholar 

  40. Wijesinghe, G., Sah, S., Ciesielski, V.: Grid vs arbitrary placement for generating animated photomosaics. In: CEC 2008, pp. 2739–2745 (2008)

    Google Scholar 

  41. Wilkens, S.: Rendering non-photorealistic images by means of a genetic algorithm. Unpublished student project (2005)

  42. Xia, T., Liao, B., Yu, Y.: Patch-based image vectorization with automatic curvilinear feature alignment. ACM Trans. Graph. 28(5) (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Ross.

Additional information

Supported by NSERC USRA and NSERC Operating Grant 138467.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergen, S., Ross, B.J. Automatic and interactive evolution of vector graphics images with genetic algorithms. Vis Comput 28, 35–45 (2012). https://doi.org/10.1007/s00371-011-0597-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0597-4

Keywords

Navigation