[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The core and the steady bargaining set for convex games

  • Original Paper
  • Published:
International Journal of Game Theory Aims and scope Submit manuscript

Abstract

Within the class of zero-monotonic and grand coalition superadditive cooperative games with transferable utility, the convexity of a game is characterized by the coincidence of its core and the steady bargaining set. As a consequence it is proved that convexity can also be characterized by the coincidence of the core of a game and the modified Zhou bargaining set à la Shimomura.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Let \(N=\{1,2,3,4\}\) be the set of players and \(v(N)=2\), \(v(\{1,2,3\})=v(\{1,2,4\})=v(\{1,3,4\})=v(\{2,3,4\})=1\), \(v(\{1,3\})=v(\{1,4\})=v(\{2,3\})=1\) and \(v(S)=0\), otherwise. Notice that the core of this game is non-emtpy. The payoff vector \(x=(\frac{1}{2},1\frac{1}{2},0,0)\in {\mathcal {MB}}^{*}(N,v)\), but \(x\not \in {\mathcal {Z}}^{*}(N,v)\). Moreover, the payoff vector \(x'=(\frac{1}{2},1,\frac{1}{4},\frac{1}{4})\in {\mathcal {Z}}^{*}(N,v)\), but \(x'\not \in C(N,v)\). With respect to the steady bargaining set notice \(x'=(\frac{1}{2},1,\frac{1}{4},\frac{1}{4})\in {\mathcal {SB}}(N,v)\), but \(x'\not \in C(N,v)\). The Example 2 (with \(a=1\)) in Shimomura (1997) provides an example of a superadditive game where the steady bargaining set is strictly included in the Zhou bargaining set.

  2. These authors prove that particular payoff vectors constructed based upon orderings of players \(\theta =(i_1,i_2,\ldots ,i_n)\) (the reduced marginal worth vector \(rm^{\theta }(v)\)) are the extreme core elements of an almost convex balanced game. In particular, if \(\theta =(1,2,\ldots ,n)\), we have \(rm^{\theta }_{1}(v)=v(N)-v(N{\setminus } \{1\})\) and \(rm^{\theta }_{2}(v)=\min \{v(N{\setminus } \{1\})-v(N{\setminus } \{1,2\}),\,v(N)-v(N{\setminus } \{2\})\}=v(N)-v(N{\setminus } \{2\})\), where the last equality follows from (5).

  3. An aspiration of a game (Nv) is a vector \(x'\in {\mathbb {R}}^N\) satisfying all cores inequalities, i.e. \(x'(S)\ge v(S)\), for all \(S\subseteq N\).

  4. A game has a large core if any aspiration \(x'\) of the game can be represented by a core allocation x, i.e. there exists \(x\in C(N,v)\,:\, x_i\le x'_i\), for all \(i\in N\).

  5. We are using the fact that for any \(\delta \in \mathcal {PK}(N{\setminus } I^{\theta ^{*}},\omega )\) and for any \(i\in N{\setminus } I^{\theta ^{*}}\),

    $$\begin{aligned} \min _{R\subseteq N{\setminus } I^{\theta ^{*}}: i\in R}\{\omega (R)-\omega (R{\setminus } \{i\})\}\le \delta _i\le \max _{R\subseteq N{\setminus } I^{\theta ^{*}}: i\in R}\{\omega (R)-\omega (R{\setminus } \{i\})\}. \end{aligned}$$
  6. The symbol \(\varsubsetneq \) between two coalitions \(S\varsubsetneq T\) means \(S\subseteq T\) and \(S\ne T\).

  7. Notice that the set Y is a non-empty box since it can be rewritten as

    $$\begin{aligned} Y=\{\alpha \in \mathbb {R}^{N{\setminus } T^{*}}\mid \,0\le \alpha _i\le |J^{\theta ^{*}}|\cdot \varepsilon _3, \text{ for } \text{ all } \;i\in N{\setminus } T^{*}, \text{ and } \alpha (N{\setminus } T^{*})=|J^{\theta ^{*}}|\cdot \varepsilon _3\}. \end{aligned}$$

    .

References

  • Davis M, Maschler M (1963) Existence of stable payoff configurations for cooperative games. Bull Am Math Soc 69:106–108

    Article  Google Scholar 

  • Davis M, Maschler M (1965) The kernel of a cooperative game. Nav Res Logist Quart 2:223–259

    Article  Google Scholar 

  • Davis M, Maschler M (1967) Existence of stable payoff configurations for cooperative games. In: Shubik M (ed) Essays in mathematical economics in honour of Oskar Morgenstern. Princeton University Press, Princeton, pp 39–52

    Google Scholar 

  • Einy E, Wettstein D (1996) Equivalence between bargaining sets and the core in simple games. Intern J Game Theory 25:65–71

    Article  Google Scholar 

  • Greenberg J (1992) On the sensitivity of von Neumann and Morgenstern abstract stable sets: the stable and the individual stable bargaining set. Intern J Game Theory 21:41–55

    Article  Google Scholar 

  • Ichiishi T (1981) Super-modularity: applications to convex games and to the greedy algorithm in LP. J Econ Theory 25:283–286

    Article  Google Scholar 

  • Izquierdo JM, Rafels C (2001) Average monotonic cooperative games. Games Econ Behav 36(2):174–192

    Article  Google Scholar 

  • Izquierdo JM, Rafels C (2012) A characterization of convex TU games by means of the Mas-Colell bargaining set (à la Shimomura). Int J Game Theory 41(2):381–395

    Article  Google Scholar 

  • Kikuta K (1997) The kernel for reasonable outcomes in a cooperative game. Int J Game Theory 26:51–59

    Article  Google Scholar 

  • Mas-Colell A (1989) An equivalence theorem for a bargaining set. J Math Econ 18:129–139

    Article  Google Scholar 

  • Núñez M, Rafels C (1998) On extreme points of the core and reduced games. Ann Oper Res 84:121–133

    Article  Google Scholar 

  • Peleg B, Sudhölter P (2007) Introduction to the theory of cooperative games, 2nd edn. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Schmeidler D (1969) The nucleolus of a characteristic function game. SIAM J Appl Math 17(6):1163–1170

    Article  Google Scholar 

  • Shapley LS (1971) Cores of convex games. Int J Game Theory 1(3):11–26

    Article  Google Scholar 

  • Shapley LS, Shubik M (1966) Quasi-cores in a monetary economy with non-convex preferences. Econometrica 34(4):805–827

    Article  Google Scholar 

  • Sharkey WW (1982) Cooperative games with large cores. Int J Game Theory 11(3):175–182

    Article  Google Scholar 

  • Shimomura K (1997) Quasi-cores in bargaining sets. Int J Game Theory 26:283–302

    Article  Google Scholar 

  • Shubik M (1984) A game theoretic approach to political economy. MIT Press, Cambridge

    Google Scholar 

  • Solymosi T (2008) Bargaining sets and the core in partioning games. Cent Eur J Oper Res 16(4):425–440

    Article  Google Scholar 

  • Zhou L (1994) A new bargaining set of an n-person game and endogenous coalition formation. Games Econ Behav 6:512–526

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Maria Izquierdo.

Additional information

The authors acknowledge the support from research grants ECO2014-52340-P (Ministerio de Economía y Competitividad) and 2014SGR40 (Generalitat de Catalunya).

Appendix

Appendix

Proof of Claim 1

Let us recall that the claim is under the hypothesis \(C(N,v)={\mathcal {SB}}(N,v)\). Next, assume \(|{\mathcal {S}}^{\theta ^{*}}_{min}(v)|=1\), say \({\mathcal {S}}^{\theta ^{*}}_{min}(v)=\{S^{*}\}\), where \(\theta ^{*}=(i_1,i_2,\ldots ,i_n)\). Then, we shall prove that there exists \(x\in {\mathcal {SB}}(N,v)\) but \(x\not \in C(N,v)\), which contradicts the hypothesis of the coincidence of the core and the steady bargaining set. Along the proof of this claim we will analyze and prove several subclaims.

SubClaim 1.1

The coalition \(S^{*}\) is included in \(T^{*}=\{i_1,\ldots ,i_{t^{*}}\}\).

Proof

Let us suppose that there exists \(i_{t'}\in S^{*}\) with \(t'\in \{t^{*}+1, t^{*}+2,\ldots ,n\}\). Then, define the vector \(x\in \mathbb {R}^N\) as \(x_{i_{t^{*}}}=\ell ^{\theta ^{*}}_{i_{t^{*}}}(v)-\varepsilon _2\), \(x_{i_{t'}}=\ell ^{\theta ^{*}}_{i_{t'}}(v)+\varepsilon _2\) and \(x_{i_k}=\ell ^{\theta ^{*}}_{i_k}(v)\), else, where

By (11), the parameter \(\varepsilon _2\) is well-defined. To end the proof, we show that \(x\in C(N,v)\) contradicting \(\ell ^{\theta ^{*}}(v)\) to be the lexmin core vector of v relative to \(\theta ^{*}\). To see this point, it is straightforward that \(x(N)=v(N)\). Moreover, if \(M\subseteq N\), \(M\ne N\), and \(i_{t^{*}}\not \in M\) then \(x(M)\ge \ell ^{\theta ^{*}}(v)(M)\ge v(M)\). If \(i_{t^{*}}\in M\) and \(\ell ^{\theta ^{*}}(v)(M)>v(M)\), then \(x(M)\ge \ell ^{\theta ^{*}}(v)(M)-\varepsilon _2> \ell ^{\theta ^{*}}(v)(M)- (\ell ^{\theta ^{*}}(v)(M)- v(M))=v(M)\). Finally, if \(i_{t^{*}}\in M\) and \(\ell ^{\theta ^{*}}(v)(M) =v(M)\) then \(M\in {\mathcal {S}}^{\theta }(v)\), and \(S^{*}\subseteq M\) since there is a unique minimal coalition in \({\mathcal {S}}^{\theta ^{*}}(v)\). Thus \(i_{t'}\in M\). Hence, \(x(M)=\ell ^{\theta ^{*}}(v)(M)\ge v(M)\) and \(x\in C(N,v)\), ending the proof of this subclaim. \(\square \)

SubClaim 1.2

The number of players in \(T^{*}=\{i_1,\ldots ,i_{t^{*}}\}\) is at least three, i.e. \(t^{*}\ge 3\).

Proof

It is clear that if \(t^{*}=1\) then \(T^{*}=\{i_1\}\) and the unique minimal coalition in \({\mathcal {S}}^{\theta ^{*}}(v)\) must be \(S^{*}=\{i_1\}\). Then, by (9), \(\ell ^{\theta ^{*}}_{i_1}(v)>m^{\theta ^{*}}_{i_1}(v)=v(\{i_1\})\) which contradicts \(S^{*}\in {\mathcal {S}}^{\theta ^{*}}(v)\). Moreover if \(t^{*}=2\) then \(T^{*}=\{i_1,i_2\}\), \(\ell ^{\theta ^{*}}_{i_1}(v)=m^{\theta ^{*}}_{i_1}(v)=v(\{i_1\})\) by (8), and \(\ell ^{\theta ^{*}}_{i_2}(v)>m^{\theta ^{*}}_{i_2}(v)=v(\{i_1,i_2\})-v(\{i_1\})\ge v(\{i_2\})\), where the last inequality comes from zero-monotonicity. From this we deduce \(\ell ^{\theta ^{*}}_{i_1}(v)+\ell ^{\theta ^{*}}_{i_2}(v)>v(\{i_1,i_2\})\), which contradicts the fact that the unique minimal coalition in \({\mathcal {S}}^{\theta ^{*}}(v)\) must be a subset of \(T^{*}\) (see Subclaim 1.1.). \(\square \)

Let us recall (see (10)) that any subgame \((R,v_R)\), with \(R\subseteq T^{*}\), \(R\ne T^{*}\), is a convex game. Therefore, the maximal marginal contribution of player \(i_{t^{*}}\in N\) to any subcoalitionFootnote 6 \(Q\varsubsetneq T^{*}{\setminus } \{i_{t^{*}}\}\) is attained at a coalition containing \(t^{*}-2\) players; that is, without loss of generality

$$\begin{aligned} \displaystyle \max _{Q\varsubsetneq T^{*}{\setminus } \{i_{t^{*}}\}}\{v(Q\cup \{i_{t^{*}}\})-v(Q)\}=v(\{i_1,i_2,\ldots ,i_{t^{*}-2}, i_{t^{*}}\})-v(\{i_1,i_2,\ldots , i_{t^{*}-2}\}). \end{aligned}$$

SubClaim 1.3

\(\ell ^{\theta ^{*}}_{i_{t^{*}}}(v)=v(\{i_1,i_2,\ldots ,i_{t^{*}-2},i_{t^{*}}\})-v(\{i_1,i_2,\ldots ,i_{t^{*}-2}\})\).

Proof

First, by (8), if \(\ell ^{\theta ^{*}}_{i_{t^{*}}}(v)<v(\{i_1,i_2,\ldots ,i_{t^{*}-2},i_{t^{*}}\})-v(\{i_1,i_2,\ldots ,i_{t^{*}-2}\})\) \(=v(\{i_1,i_2,\ldots ,i_{t^{*}-2},i_{t^{*}}\})-\ell ^{\theta ^{*}}(v)(\{i_1,i_2,\ldots ,i_{t^{*}-2}\})\), then

$$\begin{aligned} \ell ^{\theta ^{*}} (v)(\{i_1,i_2,\ldots ,i_{t^{*}-2}, i_{t^{*}}\})<v(\{i_1,i_2,\ldots ,i_{t^{*}-2},i_{t^{*}}\}), \end{aligned}$$

which contradicts \(\ell ^{\theta ^{*}}(v)\in C(N,v)\).

On the other hand, if \(\ell ^{\theta ^{*}}_{i_{t^{*}}}(v)>v(\{i_1,i_2,\ldots ,i_{t^{*}-2},i_{t^{*}}\})-v(\{i_1,i_2,\ldots ,i_{t^{*}-2}\})\), then, since \(\ell ^{\theta ^{*}}(v)\in C(N,v)\),

$$\begin{aligned} \begin{array}{ll} \ell ^{\theta ^{*}}_{i_{t^{*}}}(v)&{} >v(\{i_1,i_2,\ldots ,i_{t^{*}-2},i_{t^{*}}\})-v(\{i_1,i_2,\ldots ,i_{t^{*}-2}\}) \\ &{} =\displaystyle \max _{Q\varsubsetneq T^{*}{\setminus } \{i_{t^{*}}\}}\{v( Q\cup \{i_{t^{*}}\})-v(Q)\}\ge \displaystyle \max _{Q\varsubsetneq T^{*}{\setminus } \{i_{t^{*}}\}}\{ v(Q\cup \{i_{t^{*}}\})-\ell ^{\theta ^{*}}(v)(Q)\}. \end{array} \end{aligned}$$

Thus, \(\ell ^{\theta ^{*}}(v)(Q\cup \{i_{t^{*}}\})>v(Q\cup \{i_{t^{*}}\})\), for all \(Q\varsubsetneq \{i_1,i_2,\ldots ,i_{t^{*}-1}\}\). However adding this result to ( 11) we reach a contradiction with Subclaim 1.1. \(\square \)

Next, let us define

$$\begin{aligned} J^{\theta ^{*}}=\{i\in T^{*}=\{i_1,i_2,\ldots ,i_{t^{*}}\}\mid \ell ^{\theta ^{*}}(v)(T^{*}{\setminus } \{i\})=v(T^{*}{\setminus } \{i\}) \}. \end{aligned}$$

Notice that, by (8) (i), \(\ell ^{\theta ^{*}}(v)(T^{*}{\setminus } \{i_{t^{*}}\})=m^{\theta ^{*}}(v)(T^{*}{\setminus } \{i_{t^{*}}\})=v(T^{*}{\setminus } \{i_{t^{*}}\})\) and so \(i_{t^{*}}\in J^{\theta ^{*}}\). Furthermore, by Subclaim 1.3 it follows that \(i_{t^{*}-1}\in J^{\theta ^{*}}\) and thus \(\{i_{t^{*}-1}, i_{t^{*}}\}\subseteq J^{\theta ^{*}}\). Therefore,

$$\begin{aligned} |J^{\theta ^{*}}|\ge 2. \end{aligned}$$
(22)

Finally, by zero-monotonicity of the game v, it holds

$$\begin{aligned} \ell ^{\theta ^{*}}_i(v)>v(\{i\}), \quad \text{ for } \text{ all } \; i\in J^{\theta ^{*}}. \end{aligned}$$
(23)

To check this last point, notice that, by zero-monotonicity of v, if \(\ell ^{\theta ^{*}}_i(v)=v(\{i\})\) then \(\ell ^{\theta ^{*}}(v)(T^{*})=\ell ^{\theta ^{*}}_i(v)+\ell ^{\theta ^{*}}(v)(T^{*}{\setminus } \{i\})=v(\{i\})+v(T^{*}{\setminus } \{i\})\le v(T^{*})\) which contradicts (11). Next, let us prove the following subclaim.

SubClaim 1.4

For all \(S \subseteq T^{*}\) such that \(\ell ^{\theta ^{*}}(v)(S)=v(S)\), then \(J^{\theta ^{*}}{\setminus } S\ne \varnothing \).

Proof

Since \(i_{t^{*}}\in J^{\theta ^{*}}\), the result is trivial if \(i_{t^{*}}\not \in S\). If \(i_{t^{*}}\in S\), let

figure a

such that \(i_{{\kappa }}\not \in S\) and \(i_{{ \kappa }}+1,i_{{\kappa }}+2,\ldots , i_{t^{*}}\in S\). Notice that the index

figure b

is well-defined since, by (11), we have

figure c

. We next prove that

figure d

. To see this, first notice that

figure e

Notice that

figure f

and thus we describe

figure g

, where

figure h

. Moreover, and for all

figure i

, let us denote by

figure j

the set of predecessors of player \(i_{r_j}\) relative to the ordering

$$\begin{aligned} \theta ^{*}=(i_1,i_2,\ldots ,i_{r_1},\ldots , i_{r_2},\ldots ,i_{r_j},\ldots ,i_{\kappa },i_{\kappa }+1,\ldots , i_n). \end{aligned}$$

Then, we have

$$\begin{aligned} m^{\theta ^{*}}(v)(T^{*}{\setminus } (S\cup \{i_{{ \kappa }}\}))= & {} \displaystyle \sum _{j=1}^{m} m^{\theta ^{*}}_{r_j}(v)= \displaystyle \sum _{j=1}^{m}\left[ v(P^{\theta ^{*}}_{i_{r_j}}\cup \{i_{r_j}\})-v(P^{\theta ^{*}}_{i_{r_j}})\right] \\\le & {} \displaystyle \sum _{j=1}^{m-1}\left[ v((P^{\theta ^{*}}_{i_{r_{m}}}{\setminus } \{i_{r_j},i_{r_{j+1}},\ldots , i_{r_{m-1}}\})\cup \{i_{r_j}\})\right. \\&\left. -\;v(P^{\theta ^{*}}_{i_{r_{m}}}{\setminus } \{i_{r_j},i_{r_{j+1}},\ldots , i_{r_{m-1}}\})\right] \\&+\; v(P^{\theta ^{*}}_{i_{r_{m}}}\cup \{i_{r_m}\})-v(P^{\theta ^{*}}_{i_{r_{m}}})\\= & {} v(P^{\theta ^{*}}_{i_{r_{m}}}\cup \{i_{r_m}\})-v(P^{\theta ^{*}}_{i_{r_{m}}}{\setminus } \{i_{r_1},i_{r_{2}},\ldots , i_{r_{m-1}}\})\\\le & {} v(P^{\theta ^{*}}_{i_{r_{m}}}\cup \{i_{t^{*}}\}\cup \{i_{r_m}\})\\&-\;v((P^{\theta ^{*}}_{i_{r_{m}}}\cup \{i_{t^{*}}\}){\setminus } \{i_{r_1},i_{r_{2}},\ldots , i_{r_{m-1}}\})\\\le & {} v(T^{*}{\setminus } \{i_{\kappa }\})-v(T^{*}{\setminus } \{i_{r_1},i_{r_{2}},\ldots , i_{r_{m}}, i_{\kappa }\})\\= & {} v(T^{*}{\setminus } \{i_{\kappa }\})-v(S), \end{aligned}$$

where the first inequality follows from (2), the convexity of the subgame \((T^{*}{\setminus } \{i_{\kappa }\},v_{T^{*}{\setminus } \{i_{\kappa }\}})\) and the fact that, for all \(j=1,\ldots ,m-1\), we have

$$\begin{aligned} P^{\theta ^{*}}_{i_{r_{j}}}\subseteq P^{\theta ^{*}}_{i_{r_{m}}}{\setminus } \{i_{r_j},i_{r_{j+1}},\ldots , i_{r_{m-1}}\}, \end{aligned}$$

the second inequality follows from the convexity of the subgame \((T^{*}{\setminus } \{i_{\kappa }\},v_{T^{*}{\setminus } \{i_{\kappa }\}})\), and the third one by taking in (3) \(M=P^{\theta ^{*}}_{i_{r_{m}}}\cup \{i_{t^{*}}\}\cup \{i_{r_m}\}\) and \(M'=T^{*}{\setminus } \{i_{r_1},i_{r_{2}},\ldots , i_{r_{m}}, i_{\kappa }\}\). Therefore, we obtain that \(m^{\theta ^{*}}(v)(T^{*}{\setminus } (S\cup \{i_{{\kappa }}\}))\le v(T^{*}{\setminus } \{i_{\kappa }\})-v(S)\). Using this inequality in (24) we obtain

$$\begin{aligned} v(T^{*}{\setminus } \{i_{{ \kappa }}\})\le & {} \ell ^{\theta ^{*}}(v)(T^{*}{\setminus } \{i_{{\kappa }}\}) \le m^{\theta ^{*}}(v)(T^{*}{\setminus } (S\cup \{i_{{ \kappa }}\}))+\ell ^{\theta ^{*}}(v)(S)\\\le & {} v(T^{*}{\setminus } \{i_{\kappa }\})-v(S)+\ell ^{\theta ^{*}}(v)(S)=v(T^{*}{\setminus } \{i_{\kappa }\}). \end{aligned}$$

Therefore, we conclude that \(v(T^{*}{\setminus } \{i_{{\kappa }}\})= \ell ^{\theta ^{*}}(v)(T^{*}{\setminus } \{i_{{ \kappa }}\})\) which implies \(i_{\kappa } \in J^{\theta ^{*}}{\setminus } S\), as we want to prove. \(\square \)

Once we have proved the above subclaims, let us define the vector \(\beta \in \mathbb {R}^N\) as

$$\begin{aligned} \beta _{i}=\left\{ \begin{array}{ll}\ell ^{\theta ^{*}}_{i}(v)-\varepsilon _3 &{} \quad \text{ if } \; i\in J^{\theta ^{*}}\\ \ell _{i}^{\theta ^{*}}(v) &{} \quad \text{ if } \; i\in N{\setminus } J^{\theta ^{*}},\end{array}\right. \end{aligned}$$

where

By (23),

$$\begin{aligned} \beta _i\ge v(\{i\}), \quad \text{ for } \text{ all } \;i\in J^{\theta ^{*}}. \end{aligned}$$
(25)

Hence, define the game \((N{\setminus } T^{*},\omega )\) as follows:

$$\begin{aligned} \begin{array}{l} \omega (\varnothing )=0\\ \omega (R)=\displaystyle \max _{Q\subseteq T^{*}}\{v(R\cup Q)-\beta (R\cup Q)\}, \quad \text{ for } \text{ all } \;\varnothing \ne R\subseteq N{\setminus } T^{*}. \end{array} \end{aligned}$$

Let us remark that \(\omega (R)\le |J^{\theta ^{*}}|\cdot \varepsilon _3\), for any \(\varnothing \ne R\subseteq N{\setminus } T^{*}\). To check it, simply notice that \(\omega (R)=v(R\cup Q^{*})-\beta (R\cup Q^{*})\) for some \(Q^{*}\subseteq T^{*}\), and thus \(\omega (R)=v(R\cup Q^{*})-\beta (R\cup Q^{*})=v(R\cup Q^{*})-\ell ^{\theta ^{*}}(R\cup Q^{*})+|Q^{*}\cap J^{\theta ^{*}}|\cdot \varepsilon _3\le |Q^{*}\cap J^{\theta ^{*}}|\cdot \varepsilon _3\le |J^{\theta ^{*}}|\cdot \varepsilon _3\). Moreover, for the case \(R=N{\setminus } T^{*}\) we have \(\omega (N{\setminus } T^{*})=|J^{\theta ^{*}}|\cdot \varepsilon _3\), just by taking \(Q=T^{*}\) in its definition.

Next, define the subset Y of vectors in \(\mathbb {R}^{N{\setminus } T^{*}}\) as follows:

$$\begin{aligned} Y=\{\alpha \in \mathbb {R}^{N{\setminus } T^{*}}\mid \,\alpha _i\ge 0, \text{ for } \text{ all } \;i\in N{\setminus } T^{*} \quad \text{ and } \quad \alpha (N{\setminus } T^{*})=\omega (N{\setminus } T^{*})=|J^{\theta ^{*}}|\cdot \varepsilon _3\}. \end{aligned}$$

Notice that Y is a non-empty and compact subset of the preimputation set \(I^{*}(N{\setminus } T^{*},\omega )\), and thus, by Schmeidler (1969), the kernelFootnote 7 of the game \((N{\setminus } T^{*},\omega )\) relative to Y is non-empty, i.e. \(\mathcal {K}(N{\setminus } T^{*}, \omega , Y)\ne \varnothing \).

Hence, select an element \(\delta \) in the kernel of the game \((N{\setminus } T^{*}, \omega )\) relative to Y, i.e. \(\delta \in \mathcal {K}(N{\setminus } T^{*},\omega , Y)\), and define the vector \(x\in \mathbb {R}^N\) as follows:

$$\begin{aligned} x_{i}=\left\{ \begin{array}{lll} \beta _{i}+\delta _{i} &{}=\ell ^{\theta ^{*}}_{i}(v)+\delta _{i} &{}\quad \text{ if } \; i \in N{\setminus } T^{*}\\ \beta _{i}&{} =\ell ^{\theta ^{*}}_i(v) &{} \quad \text{ if } \; i \in T^{*}{\setminus } J^{\theta ^{*}}\\ \beta _{i}&{}=\ell ^{\theta ^{*}}_i(v)-\varepsilon _3 &{} \quad \text{ if } \; i\in J^{\theta ^{*}}.\end{array}\right. \end{aligned}$$

The vector x is an imputation of the game (Nv): clearly, x is efficient, \(x(N)=v(N)\); moreover, by definition of \(\varepsilon _3\) and (23), we have \(x_i=\ell ^{\theta ^{*}}_i(v)-\varepsilon _3 \ge v(\{i\})\), for all \(i\in J^{\theta ^{*}}\), \(x_i=\ell ^{\theta ^{*}}_i(v)\ge v(\{i\})\), for all \(i\in T^{*}{\setminus } J^{\theta ^{*}}\) and, since \(\delta _i\ge 0\), \(x_i=\beta _i+\delta _i=\ell ^{\theta ^{*}}_i(v)+\delta _i\ge v(\{i\})\), for all \(i\in N{\setminus } T^{*}\).

However, it is not in the core of the game (Nv) since \(x(T^{*}{\setminus } \{i_{t^{*}}\})=\ell ^{\theta ^{*}}(v)(T^{*}{\setminus } \{i_{t^{*}}\})-(|J^{\theta ^{*}}|-1)\varepsilon _3 = v(T^{*}{\setminus } \{i_{t^{*}}\})-(|J^{\theta ^{*}}|-1)\varepsilon _3 < v(T^{*}{\setminus } \{i_{t^{*}}\})\). We finally check that x is in the steady bargaining set of the game (Nv). To this aim take \(S\subseteq N\) such that \(v(S)-x(S)>0\). Notice that, since \(x\in I(N,v)\), then \(|S|\ge 2\). Furthermore, it holds that

$$\begin{aligned} S\cap J^{\theta ^{*}}\ne \varnothing , \end{aligned}$$
(26)

since otherwise \(S\cap J^{\theta ^{*}}= \varnothing \) and we would have

$$\begin{aligned} v(S)-x(S)= & {} v(S)-\beta (S)-\delta (S\cap (N{\setminus } T^{*}))\le v(S)-\beta (S) \\= & {} v(S)-\ell ^{\theta ^{*}}(v)(S)\le 0, \end{aligned}$$

reaching a contradiction with \(v(S)-x(S)>0\). Next, we shall prove there exists \(M\subseteq N\) such that \(M{\setminus } S\ne \varnothing \), \(S{\setminus } M\ne \varnothing \), \(S\cap M\ne \varnothing \) and \(v(M)-x(M)\ge v(S)-x(S)\). We distinguish two cases.

A: :

\(S \subseteq T^{*}=\{i_1,\ldots ,i_{t^{*}}\}\). By the way we have defined \(\varepsilon _3\), and being \(S\subseteq T^{*}\), let us first see that \(\ell ^{\theta ^{*}}(v)(S)=v(S)\). To check it, let us suppose that \(\ell ^{\theta ^{*}}(v)(S)>v(S)\), then \(v(S)-x(S)=v(S)-\ell ^{\theta ^{*}}(v)(S)+|S\cap J^{\theta ^{*}}|\cdot \varepsilon _3\le v(S)-\ell ^{\theta ^{*}}(v)(S)+n\cdot \varepsilon _3< 0\), which contradicts the hypothesis \(v(S)-x(S)>0\). Moreover, by (26), \(S\cap J^{\theta ^{*}}\ne \varnothing \), and, by Subclaim 1.4, \(J^{\theta ^{*}}{\setminus } S\ne \varnothing \). Let \(j\in J^{\theta ^{*}}{\setminus } S\) and \(i\in J^{\theta ^{*}}\cap S\) and take \(M=T^{*}{\setminus } \{i\}\). Notice that \(j\in M{\setminus } S\), \(i\in S{\setminus } M\) and, since \(|S|\ge 2\), \(M\cap S\ne \varnothing \). Furthermore, since \(i\in J^{\theta ^{*}}\) we have \(\ell ^{\theta ^{*}}(v)(M)=v(M)\), and thus

$$\begin{aligned} v(M)-x(M)= & {} v(M)-\ell ^{\theta ^{*}}(v)(M)+(|J^{\theta ^{*}}|-1)\cdot \varepsilon _3\\= & {} v(S)-\ell ^{\theta ^{*}}(v)(S)+(|J^{\theta ^{*}}|-1)\cdot \varepsilon _3 \ge v(S)-x(S), \end{aligned}$$

where the inequality follows since \(j \in J^{\theta ^{*}}{\setminus } S\).

B: :

\(S\cap (N{\setminus } T^{*})\ne \varnothing \). First let us remark that \(S\cap (N{\setminus } T^{*})\ne N{\setminus } T^{*}\), or equivalently \(N{\setminus } (T^{*}\cup S)\ne \varnothing \); this holds since, otherwise, \(S\cap (N{\setminus } T^{*})=N{\setminus } T^{*}\) and

$$\begin{aligned} v(S)-x(S)&=v(S)-\beta (S)-\delta (N{\setminus } T^{*})= v(S)-\beta (S)-\omega (N{\setminus } T^{*})\nonumber \\&=v(S)-\beta (S)-|J^{\theta ^{*}}|\cdot \varepsilon _3\nonumber \\&= v(S)-\ell ^{\theta ^{*}}(v)(S)+|S\cap J^{\theta ^{*}}|\cdot \varepsilon _3-|J^{\theta ^{*}}|\cdot \varepsilon _3\le 0, \end{aligned}$$
(27)

reaching a contradiction.

Hence, let \(i\in S\cap (N{\setminus } T^{*})\) and select \(j\in (N{\setminus } T^{*}){\setminus } S=N{\setminus } (T^{*}\cup S)\) such that

$$\begin{aligned} s^{\omega }_{ji}(\delta )\ge s^{\omega }_{ij}(\delta ). \end{aligned}$$
(28)

Let us prove that such a player j exists. To check it, suppose that, given an arbitrary \(k\in (N{\setminus } T^{*}){\setminus } S\), we would have \(s^{\omega }_{ki}(\delta )< s^{\omega }_{ik}(\delta )\). Since \(\delta \in \mathcal {K}(N{\setminus } T^{*},\omega ,Y)\) then we would have that either \(\delta _k=0\) or \(\delta _i=|J^{\theta ^{*}}|\cdot \varepsilon _3\). However, \(\delta _i=|J^{\theta ^{*}}|\cdot \varepsilon _3\) is not possible since, by a similar reasoning as in (27), we would reach a contradiction with \(v(S)-x(S)>0\). Therefore, we obtain that \(\delta _k=0\). Since k was chosen arbitrarily, we would conclude that \(\delta _k=0\) for all \(k\in (N{\setminus } T^{*}){\setminus } S\) and thus

$$\begin{aligned} |J^{\theta ^{*}}|\cdot \varepsilon _3=\omega (N{\setminus } T^{*})=\delta (N{\setminus } T^{*})=\delta ((N{\setminus } T^{*})\cap S). \end{aligned}$$

But then,

$$\begin{aligned} v(S)-x(S)&=v(S)-\beta (S)-\delta (S\cap (N{\setminus } T^{*}))\\&= v(S)-\ell ^{\theta ^{*}}(v)(S)+|S\cap J^{\theta ^{*}}|\cdot \varepsilon _3- |J^{\theta ^{*}}|\cdot \varepsilon _3\\&\quad \le v(S)-\ell ^{\theta ^{*}}(v)(S)\le 0, \end{aligned}$$

getting a contradiction with \(v(S)-x(S)>0\).

Now, by definition and taking agents i and j as in (28), we have

$$\begin{aligned} s_{ji}^{\omega }(\delta )= & {} \omega (R^{*})-\delta (R^{*})=v(R^{*}\cup Q^{*})-\beta (R^{*}\cup Q^{*})-\delta (R^{*})\\= & {} v(R^{*}\cup Q^{*})-x(R^{*}\cup Q^{*}), \end{aligned}$$

for some \(R^{*}\subseteq N{\setminus } T^{*}\), with \(j\in R^{*}\) but \(i\not \in R^{*}\), and some \(Q^{*}\subseteq T^{*}\). Hence, by (28), it follows that

$$\begin{aligned} v(R^{*}\cup Q^{*})-x(R^{*}\cup Q^{*})&= s^{\omega }_{ji}(\delta )\ge s^{\omega }_{ij}(\delta )\nonumber \\&\ge \omega (S\cap (N{\setminus } T^{*}))-\delta (S\cap (N{\setminus } T^{*}))\nonumber \\&\ge v(S)-x(S) >0. \end{aligned}$$
(29)

Notice that \(i\in S{\setminus } (R^{*}\cup Q^{*})\) and \(j\in (R^{*}\cup Q^{*}){\setminus } S\). Furthermore, if \(S\cap (R^{*} \cup Q^{*})\ne \varnothing \), then take \(M=R^{*}\cup Q^{*}\) and we are done. Otherwise, in case \(S\cap (R^{*}\cup Q^{*})=\varnothing \) we have, by (26), \((R^{*}\cup Q^{*})\cap J^{\theta ^{*}}\ne \varnothing \).

Hence, since we are supposing \(S\cap (R^{*}\cup Q^{*})=\varnothing \), \((R^{*}\cup Q^{*})\cap J^{\theta ^{*}}\ne \varnothing \) and \(S\cap J^{\theta ^{*}}\ne \varnothing \) (see (26)), we conclude that

$$\begin{aligned} S\cap J^{\theta ^{*}}\varsubsetneq J^{\theta ^{*}}. \end{aligned}$$
(30)

Therefore,

$$\begin{aligned} v(S)-x(S)= & {} v(S)-\beta (S)-\delta (S\cap (N{\setminus } T^{*}) )\\= & {} v(S)-\ell ^{\theta ^{*}}(v)(S)+|S\cap J^{\theta ^{*}}|\cdot \varepsilon _3-\delta (S\cap (N{\setminus } T^{*}) )\\\le & {} v(S)-\ell ^{\theta ^{*}}(v)(S)+|S\cap J^{\theta ^{*}}|\cdot \varepsilon _3\\\le & {} (|J^{\theta ^{*}}|-1)\cdot \varepsilon _3. \end{aligned}$$

Hence, it easily follows that

$$\begin{aligned} v(S)-x(S)\le (|J^{\theta ^{*}}|-1)\cdot \varepsilon _3=v(T^{*}{\setminus } \{k\})-x(T^{*}{\setminus } \{k\}) \end{aligned}$$
(31)

for all \(k\in J^{\theta ^{*}}\). Finally, by (26) and the fact that \(J^{\theta ^{*}}\subseteq T^{*}\), we have \(S\cap T^{*}\ne \varnothing \). At this point we distinguish two cases:

  • B.1 If \(|S\cap T^{*}|=1\), i.e. \(S\cap T^{*}=\{i'\}\), then take \(M=T^{*}{\setminus } \{k\}\) where \(k\in J^{\theta ^{*}}{\setminus } S\) (such a player exists since \(|J^{\theta ^{*}}|\ge 2\), see (22)). In this subcase, \(i'\in M\cap S\), \(M{\setminus } S\ne \varnothing \), since by Subclaim 1.2, \(t^{*}\ge 3\), and \(S{\setminus } M\ne \varnothing \), by the hypothesis of case B.

  • B.2 If \(|S\cap T^{*}|\ge 2\), then take \(M=T^{*}{\setminus } \{k\}\) where \(k\in J^{\theta ^{*}}\cap S\) (such a player exists by (26)). In this subcase, \( M\cap S\ne \varnothing \) since \(|S\cap T^{*}|\ge 2\) , \(M{\setminus } S\ne \varnothing \) since, by (30), \(S\cap J^{\theta ^{*}}\varsubsetneq J^{\theta ^{*}}\), and \(S{\setminus } M\ne \varnothing \), by the hypothesis of case B.

In both cases B.1 and B.2, \(M=T^{*}{\setminus } \{k\}\), for some \(k\in J^{\theta ^{*}}\). Thus, by (31), we are done.

From both cases A and B, we have shown that \(x\not \in C(N,v)\), but \(x \in {\mathcal {SB}}(N,v)\), getting a contradiction with the hypothesis \(C(N,v)={\mathcal {SB}}(N,v)\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izquierdo, J.M., Rafels, C. The core and the steady bargaining set for convex games. Int J Game Theory 47, 35–54 (2018). https://doi.org/10.1007/s00182-017-0576-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00182-017-0576-8

Keywords

Navigation