Abstract
Type-2 fuzzy systems can be of great help in image analysis and pattern recognition applications. In particular, edge detection is a process usually applied to image sets before the training phase in recognition systems. This preprocessing step helps to extract the most important shapes in an image, ignoring the homogeneous regions and remarking the real objective to classify or recognize. Many traditional and fuzzy edge detectors can be used, but it is very difficult to demonstrate which one is better before the recognition results are obtained. In this work we show experimental results where several edge detectors were used to preprocess the same image sets. Each resulting image set was used as training data for a neural network recognition system, and the recognition rates were compared. In this paper we present the advantage of using a general type-2 fuzzy edge detector method in the preprocessing phase of a face recognition system. The Sobel and Prewitt edge detectors combined with GT2 FSs are considered in this work. In our approach, the main idea is to apply a general type-2 fuzzy edge detector on two image databases to reduce the size of the dataset to be processed in a face recognition system. The recognition rate is compared using different edge detectors including the fuzzy edge detectors (type-1, interval, and general type-2 FS) and the traditional Prewitt and Sobel operators.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
J. Canny, A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)
I. Sobel, Camera models and perception. Ph.D. thesis, Stanford University, Stanford, CA, 1970
J.M.S. Prewitt, Object enhancement and extraction, ed. by B.S. Lipkin, A. Rosenfeld. in Picture Analysis and Psychopictorics, (Academic Press, NY, 1970), pp. 75–149
F. Perez-Ornelas, O. Mendoza, P. Melin, J.R. Castro, A. Rodriguez-Diaz, Fuzzy index to evaluate edge detection in digital images. PLoS ONE 10(6), 1–19 (2015)
R. Kirsch, Computer determination of the constituent structure of biological images. Comput. Biomed. Res. 4, 315–328 (1971)
L. Hu, H.D. Cheng, M. Zhang, A high performance edge detector based on fuzzy inference rules. Inf. Sci. 177(21), 4768–4784 (2007)
Z. Talai, A. Talai, A fast edge detection using fuzzy rules, in 2011 International Conference on Communications, Computing and Control Applications (CCCA), Mar 2011, pp. 1–5
C. Tao, W. Thompson, J. Taur, A fuzzy if-then approach to edge detection, in Fuzzy Systems, (1993), pp. 1356–1360
R. Biswas, J. Sil, An improved canny edge detection algorithm based on type-2 fuzzy sets. Procedia Technol. 4, 820–824 (2012)
O. Mendoza, P. Melin, O. Castillo, An improved method for edge detection based on interval type-2 fuzzy logic. Expert Syst. Appl. 37(12), 8527–8535 (2010)
O. Mendoza, P. Melin, G. Licea, A new method for edge detection in image processing using interval type-2 fuzzy logic, in 2007 IEEE International Conference on Granular Computing (GRC 2007), Nov 2007, pp. 151–151
O. Mendoza, P. Melin, G. Licea, Interval type-2 fuzzy logic for edges detection in digital images. Int. J. Intell. Syst. (IJIS) 24(11), 1115–1133 (2009)
C.I. Gonzalez, P. Melin, J.R. Castro, O. Mendoza, O. Castillo, An improved sobel edge detection method based on generalized type-2 fuzzy logic. Soft. Comput. 20(2), 773–784 (2014)
P. Melin, C.I. Gonzalez, J.R. Castro, O. Mendoza, O. Castillo, Edge-detection method for image processing based on generalized type-2 fuzzy logic. IEEE Trans. Fuzzy Syst. 22(6), 1515–1525 (2014)
O. Mendoza, P. Melin, O. Castillo, Neural networks recognition rate as index to compare the performance of fuzzy edge detectors, in Neural Networks (IJCNN), The 2010 International Joint Conference on, (2010), pp. 1–6
A. Doostparast Torshizi, M.H. Fazel Zarandi, Alpha-plane based automatic general type-2 fuzzy clustering based on simulated annealing meta-heuristic algorithm for analyzing gene expression data. Comput. Biol. Med. 64, 347–359 (2015)
S.M.M. Golsefid, F. Zarandi, I.B. Turksen, Multi-central general type-2 fuzzy clustering approach for pattern recognitions. Inf. Sci. (Ny) 328, 172–188 (2016)
G.E. Martínez, O. Mendoza, J.R. Castro, P. Melin, O. Castillo, Generalized type-2 fuzzy logic in response integration of modular neural networks, in IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), (2013), pp. 1331–1336
J.M. Mendel, General type-2 fuzzy logic systems made simple: a tutorial. IEEE Trans. Fuzzy Syst. 22(5), 1162–1182 (2014)
M.A. Sanchez, O. Castillo, J.R. Castro, Generalized type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems. Expert Syst. Appl. 42(14), 5904–5914 (2015)
C. Wagner, H. Hagras, Toward general type-2 fuzzy logic systems based on zSlices. IEEE Trans. Fuzzy Syst. 18(4), 637–660 (2010)
J.M. Mendel, R.I.B. John, Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)
D. Zhai, J.M. Mendel, Uncertainty measures for general type-2 fuzzy sets. Inf. Sci. 181(3), 503–518 (2011)
D. Zhai, J. Mendel, Centroid of a general type-2 fuzzy set computed by means of the centroid-flow algorithm, in Fuzzy Systems (FUZZ), 2010 IEEE International Conference on, (2010), pp. 1–8
L.A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. SMC-3(1), 28–44 (1973)
L.A. Zadeh, Fuzzy Sets, vol. 8 (Academic Press Inc., USA, 1965)
F. Liu, An efficient centroid type-reduction strategy for general type-2 fuzzy logic system. Inf. Sci. 178(9), 2224–2236 (2008)
X. Liu, J.M. Mendel, D. Wu, Study on enhanced Karnik-Mendel algorithms: Initialization explanations and computation improvements. Inf. Sci. 184(1), 75–91 (2012)
J.M. Mendel, On KM algorithms for solving type-2 fuzzy set problems. IEEE Trans. Fuzzy Syst. 21(3), 426–446 (2013)
C. Wagner, H. Hagras, Employing zSlices based general type-2 fuzzy sets to model multi level agreement, in 2011 IEEE Symposium on Advances in Type-2 Fuzzy Logic Systems (T2FUZZ), (2011), pp. 50–57
J.M. Mendel, Comments on α-plane representation for type-2 fuzzy sets: theory and applications. IEEE Trans. Fuzzy Syst. 18(1), 229–230 (2010)
J.M. Mendel, F. Liu, D. Zhai, α-Plane representation for type-2 fuzzy sets: theory and applications. IEEE Trans. Fuzzy Syst. 17(5), 1189–1207 (2009)
R.C. Gonzalez, R.E. Woods, S.L. Eddins, Digital Image Processing using Matlab, (Prentice-Hall, 2004)
O. Mendoza, P. Melin, G. Licea, A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral. Inf. Sci. 179(13), 2078–2101 (2009)
The USC-SIPI image database, http://www.sipi.usc.edu/database/
A.S. Georghiades, P.N. Belhumeur, D.J. Kriegman, From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)
K.C. Lee, J. Ho, D. Kriegman, Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698 (2005)
P.J. Phillips, H. Moon, S.A. Rizvi, P.J. Rauss, The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Melin, P. (2018). Type-2 Fuzzy Logic in Pattern Recognition Applications. In: John, R., Hagras, H., Castillo, O. (eds) Type-2 Fuzzy Logic and Systems. Studies in Fuzziness and Soft Computing, vol 362. Springer, Cham. https://doi.org/10.1007/978-3-319-72892-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-72892-6_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-72891-9
Online ISBN: 978-3-319-72892-6
eBook Packages: EngineeringEngineering (R0)