[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Type-2 Fuzzy Logic in Pattern Recognition Applications

  • Chapter
  • First Online:
Type-2 Fuzzy Logic and Systems

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 362))

  • 661 Accesses

Abstract

Type-2 fuzzy systems can be of great help in image analysis and pattern recognition applications. In particular, edge detection is a process usually applied to image sets before the training phase in recognition systems. This preprocessing step helps to extract the most important shapes in an image, ignoring the homogeneous regions and remarking the real objective to classify or recognize. Many traditional and fuzzy edge detectors can be used, but it is very difficult to demonstrate which one is better before the recognition results are obtained. In this work we show experimental results where several edge detectors were used to preprocess the same image sets. Each resulting image set was used as training data for a neural network recognition system, and the recognition rates were compared. In this paper we present the advantage of using a general type-2 fuzzy edge detector method in the preprocessing phase of a face recognition system. The Sobel and Prewitt edge detectors combined with GT2 FSs are considered in this work. In our approach, the main idea is to apply a general type-2 fuzzy edge detector on two image databases to reduce the size of the dataset to be processed in a face recognition system. The recognition rate is compared using different edge detectors including the fuzzy edge detectors (type-1, interval, and general type-2 FS) and the traditional Prewitt and Sobel operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Canny, A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  2. I. Sobel, Camera models and perception. Ph.D. thesis, Stanford University, Stanford, CA, 1970

    Google Scholar 

  3. J.M.S. Prewitt, Object enhancement and extraction, ed. by B.S. Lipkin, A. Rosenfeld. in Picture Analysis and Psychopictorics, (Academic Press, NY, 1970), pp. 75–149

    Google Scholar 

  4. F. Perez-Ornelas, O. Mendoza, P. Melin, J.R. Castro, A. Rodriguez-Diaz, Fuzzy index to evaluate edge detection in digital images. PLoS ONE 10(6), 1–19 (2015)

    Article  Google Scholar 

  5. R. Kirsch, Computer determination of the constituent structure of biological images. Comput. Biomed. Res. 4, 315–328 (1971)

    Article  Google Scholar 

  6. L. Hu, H.D. Cheng, M. Zhang, A high performance edge detector based on fuzzy inference rules. Inf. Sci. 177(21), 4768–4784 (2007)

    Article  Google Scholar 

  7. Z. Talai, A. Talai, A fast edge detection using fuzzy rules, in 2011 International Conference on Communications, Computing and Control Applications (CCCA), Mar 2011, pp. 1–5

    Google Scholar 

  8. C. Tao, W. Thompson, J. Taur, A fuzzy if-then approach to edge detection, in Fuzzy Systems, (1993), pp. 1356–1360

    Google Scholar 

  9. R. Biswas, J. Sil, An improved canny edge detection algorithm based on type-2 fuzzy sets. Procedia Technol. 4, 820–824 (2012)

    Article  Google Scholar 

  10. O. Mendoza, P. Melin, O. Castillo, An improved method for edge detection based on interval type-2 fuzzy logic. Expert Syst. Appl. 37(12), 8527–8535 (2010)

    Article  Google Scholar 

  11. O. Mendoza, P. Melin, G. Licea, A new method for edge detection in image processing using interval type-2 fuzzy logic, in 2007 IEEE International Conference on Granular Computing (GRC 2007), Nov 2007, pp. 151–151

    Google Scholar 

  12. O. Mendoza, P. Melin, G. Licea, Interval type-2 fuzzy logic for edges detection in digital images. Int. J. Intell. Syst. (IJIS) 24(11), 1115–1133 (2009)

    Article  MATH  Google Scholar 

  13. C.I. Gonzalez, P. Melin, J.R. Castro, O. Mendoza, O. Castillo, An improved sobel edge detection method based on generalized type-2 fuzzy logic. Soft. Comput. 20(2), 773–784 (2014)

    Article  Google Scholar 

  14. P. Melin, C.I. Gonzalez, J.R. Castro, O. Mendoza, O. Castillo, Edge-detection method for image processing based on generalized type-2 fuzzy logic. IEEE Trans. Fuzzy Syst. 22(6), 1515–1525 (2014)

    Article  Google Scholar 

  15. O. Mendoza, P. Melin, O. Castillo, Neural networks recognition rate as index to compare the performance of fuzzy edge detectors, in Neural Networks (IJCNN), The 2010 International Joint Conference on, (2010), pp. 1–6

    Google Scholar 

  16. A. Doostparast Torshizi, M.H. Fazel Zarandi, Alpha-plane based automatic general type-2 fuzzy clustering based on simulated annealing meta-heuristic algorithm for analyzing gene expression data. Comput. Biol. Med. 64, 347–359 (2015)

    Article  Google Scholar 

  17. S.M.M. Golsefid, F. Zarandi, I.B. Turksen, Multi-central general type-2 fuzzy clustering approach for pattern recognitions. Inf. Sci. (Ny) 328, 172–188 (2016)

    Article  Google Scholar 

  18. G.E. Martínez, O. Mendoza, J.R. Castro, P. Melin, O. Castillo, Generalized type-2 fuzzy logic in response integration of modular neural networks, in IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), (2013), pp. 1331–1336

    Google Scholar 

  19. J.M. Mendel, General type-2 fuzzy logic systems made simple: a tutorial. IEEE Trans. Fuzzy Syst. 22(5), 1162–1182 (2014)

    Article  Google Scholar 

  20. M.A. Sanchez, O. Castillo, J.R. Castro, Generalized type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems. Expert Syst. Appl. 42(14), 5904–5914 (2015)

    Article  Google Scholar 

  21. C. Wagner, H. Hagras, Toward general type-2 fuzzy logic systems based on zSlices. IEEE Trans. Fuzzy Syst. 18(4), 637–660 (2010)

    Article  Google Scholar 

  22. J.M. Mendel, R.I.B. John, Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)

    Article  Google Scholar 

  23. D. Zhai, J.M. Mendel, Uncertainty measures for general type-2 fuzzy sets. Inf. Sci. 181(3), 503–518 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Zhai, J. Mendel, Centroid of a general type-2 fuzzy set computed by means of the centroid-flow algorithm, in Fuzzy Systems (FUZZ), 2010 IEEE International Conference on, (2010), pp. 1–8

    Google Scholar 

  25. L.A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. SMC-3(1), 28–44 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  26. L.A. Zadeh, Fuzzy Sets, vol. 8 (Academic Press Inc., USA, 1965)

    MATH  Google Scholar 

  27. F. Liu, An efficient centroid type-reduction strategy for general type-2 fuzzy logic system. Inf. Sci. 178(9), 2224–2236 (2008)

    Article  MathSciNet  Google Scholar 

  28. X. Liu, J.M. Mendel, D. Wu, Study on enhanced Karnik-Mendel algorithms: Initialization explanations and computation improvements. Inf. Sci. 184(1), 75–91 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. J.M. Mendel, On KM algorithms for solving type-2 fuzzy set problems. IEEE Trans. Fuzzy Syst. 21(3), 426–446 (2013)

    Article  Google Scholar 

  30. C. Wagner, H. Hagras, Employing zSlices based general type-2 fuzzy sets to model multi level agreement, in 2011 IEEE Symposium on Advances in Type-2 Fuzzy Logic Systems (T2FUZZ), (2011), pp. 50–57

    Google Scholar 

  31. J.M. Mendel, Comments on  α-plane representation for type-2 fuzzy sets: theory and applications. IEEE Trans. Fuzzy Syst. 18(1), 229–230 (2010)

    Article  Google Scholar 

  32. J.M. Mendel, F. Liu, D. Zhai, α-Plane representation for type-2 fuzzy sets: theory and applications. IEEE Trans. Fuzzy Syst. 17(5), 1189–1207 (2009)

    Article  Google Scholar 

  33. R.C. Gonzalez, R.E. Woods, S.L. Eddins, Digital Image Processing using Matlab, (Prentice-Hall, 2004)

    Google Scholar 

  34. O. Mendoza, P. Melin, G. Licea, A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral. Inf. Sci. 179(13), 2078–2101 (2009)

    Article  Google Scholar 

  35. The USC-SIPI image database, http://www.sipi.usc.edu/database/

  36. A.S. Georghiades, P.N. Belhumeur, D.J. Kriegman, From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)

    Article  Google Scholar 

  37. K.C. Lee, J. Ho, D. Kriegman, Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698 (2005)

    Article  Google Scholar 

  38. P.J. Phillips, H. Moon, S.A. Rizvi, P.J. Rauss, The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Melin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Melin, P. (2018). Type-2 Fuzzy Logic in Pattern Recognition Applications. In: John, R., Hagras, H., Castillo, O. (eds) Type-2 Fuzzy Logic and Systems. Studies in Fuzziness and Soft Computing, vol 362. Springer, Cham. https://doi.org/10.1007/978-3-319-72892-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72892-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72891-9

  • Online ISBN: 978-3-319-72892-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics