[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Image Processing and Pattern Recognition with Interval Type-2 Fuzzy Inference Systems

  • Chapter
  • First Online:
Frontiers of Higher Order Fuzzy Sets
  • 635 Accesses

Abstract

Interval type-2 fuzzy systems can be of great help in achieving efficient image processing and pattern recognition applications. In particular, edge detection is an operation usually applied to image sets before the training phase in recognition systems. This preprocessing step helps to extract the most important shapes in an image, ignoring the homogeneous regions and remarking the real objective to classify or recognize. Many traditional and fuzzy edge detectors have been proposed, but it is very difficult to demonstrate which one is better before the recognition results are obtained. In this chapter, we present experimental results where several edge detectors were used to preprocess the same image sets. Each resultant image set was used as training data for a neural network recognition system, and the recognition rates were compared. The goal of these experiments is to find the better edge detector that can be used to improve the training data of a neural network for image recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A.N. Evans, X.U. Liu, Morphological gradient approach for color edges detection. IEEE Trans. Image Process. 15(6), 1454–1463 (2006)

    Article  Google Scholar 

  2. A.S. Georghiades, P.N. Belhumeur, D.J. Kriegman, From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)

    Article  Google Scholar 

  3. AT & T Laboratories Cambridge, The ORL database of faces, http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html. Accessed 9 Dec 2013

  4. F. Russo, G. Ramponi, Edge extraction by FIRE operators fuzzy systems. IEEE World Congr. Comput. Intell., 1, 249–253 (1994)

    Google Scholar 

  5. H. Bustince, E. Berrenechea, M. Pagola, J. Fernandez, Interval-Valued Fuzzy Sets Constructed from Matrices: Application to Edge Detection, Fuzzy Sets and Systems (Elsevier), http://www.sciencedirect.com. Accessed 13 Dec 2013

  6. J. Mendel, Uncertain Rule-Based Fuzzy Logic Systems : Introduction and New Directions (Prentice-Hall, Upper Saddle River, 2001)

    Google Scholar 

  7. J.R. Castro, O. Castillo, P. Melin, A. Rodriguez-Diaz, Building fuzzy inference systems with a new interval type-2 fuzzy logic toolbox. Transactions on Computational Science, vol. 4750 (Springer, Heidelberg, 2008), pp. 104–114

    Google Scholar 

  8. K. Revathy, S. Lekshmi, S.R. Prabhakaran Nayar, Fractal-based fuzzy technique for detection of active regions from solar. J. Solar Phys. 228, 43–53 (2005)

    Article  Google Scholar 

  9. K. Suzuki, I. Horiba, N. Sugie, M. Nanki, Contour extraction of left ventricular cavity from digital subtraction angiograms using a neural edge detector. Syst. Comput. Jpn., 55–69 (2003)

    Google Scholar 

  10. K.C. Lee, J. Ho, D. Kriegman, Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell., 27(5), 684–698 (2005)

    Article  Google Scholar 

  11. L. Hua, H.D. Cheng, Ming Zhanga, A high performance edge detector based on fuzzy inference rules. Int. J. Inf. Sci. 177(21), 4768–4784 (2007) (Elsevier, New York)

    Google Scholar 

  12. M. Heath, S. Sarkar, T. Sanocki, K.W. Bowyer, A robust visual method for assessing the relative performance of edge-detection algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 19(12), 1338–1359 (1997)

    Article  Google Scholar 

  13. O. Mendoza, P. Melin, The fuzzy Sugeno integral as a decision operator in the recognition of images with modular neural networks. Hybrid Intelligent Systems (Springer, Germany, 2007), pp. 299–310

    Google Scholar 

  14. O. Mendoza, P. Melin, G. Licea, A new method for edge detection in image processing using interval type-2 fuzzy logic. IEEE International Conference on Granular Computing (GRC 2007) (Silicon Valley, 2007)

    Google Scholar 

  15. O. Mendoza, P. Melin, G. Licea, A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the sugeno integral. Inf. Sci. 179(13), 2078–2101 (2007) (Elsevier, New York)

    Article  Google Scholar 

  16. O. Mendoza, P. Melin, G. Licea, Fuzzy inference systems type-1 and type-2 for digital images edges detection. Eng. Lett., Int. Assoc. Eng., E.U.A., 15(1) (2007) http://www.engineeringletters.com/issues_v15/issue_1/EL_15_1_7.pdf

  17. O. Mendoza, P. Melin, G. Licea, Interval type-2 fuzzy logic for module relevance estimation in Sugeno integration of modular neural networks. Soft Computing for Hybrid Intelligent Systems (Springer, Germany, 2008), pp. 115–127.

    Google Scholar 

  18. O. Mendoza, P. Melin, G. Licea, A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral. Inf. Sci. 179(3), 2078–2101 (2008) (Elsevier)

    Google Scholar 

  19. O. Mendoza, P. Melin, G. Licea, Interval type-2 fuzzy logic for edges detection in digital images. Int. J. Intell. Syst. 24(11), 1115–1134 (2009) (Wiley, New York)

    Article  MATH  Google Scholar 

  20. O. Mendoza, P. Melin, G. Licea, Interval type-2 fuzzy logic and modular neural networks for face recognition applications. Appl. Soft Comput. J. 9(4), 1377–1387 (2009)

    Article  Google Scholar 

  21. O. Mendoza, P. Melin, O. Castillo, G. Licea, Type-2 fuzzy logic for improving training data and response integration in modular neural networks for image recognition. Foundations of Fuzzy Logic and Soft Computing (LNCS) (Springer, Germany, 2007), pp. 604–612

    Google Scholar 

  22. P.J. Phillips, H. Moon, S.A. Rizvi, P.J. Rauss, The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  23. Y. Yitzhaky, E. Peli, A method for objective edge detection evaluation and detector parameter selection. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 1027–1033 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Melin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Melin, P. (2015). Image Processing and Pattern Recognition with Interval Type-2 Fuzzy Inference Systems. In: Sadeghian, A., Tahayori, H. (eds) Frontiers of Higher Order Fuzzy Sets. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3442-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3442-9_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3441-2

  • Online ISBN: 978-1-4614-3442-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics