[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

General Type-2 Fuzzy Edge Detection in the Preprocessing of a Face Recognition System

  • Chapter
  • First Online:
Nature-Inspired Design of Hybrid Intelligent Systems

Abstract

In this paper, we present the advantage of using a general type-2 fuzzy edge detector method in the preprocessing phase of a face recognition system. The Sobel and Prewitt edge detectors combined with GT2 FSs are considered in this work. In our approach, the main idea is to apply a general type-2 fuzzy edge detector on two image databases to reduce the size of the dataset to be processed in a face recognition system. The recognition rate is compared using different edge detectors including the fuzzy edge detectors (type-1 and interval type-2 FS) and the traditional Prewitt and Sobel operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Biswas, R. and Sil, J., “An Improved Canny Edge Detection Algorithm Based on Type-2 Fuzzy Sets,” Procedia Technology, vol. 4, pp. 820–824, Jan. 2012.

    Google Scholar 

  2. Canny, J. “A Computational Approach to Edge Detection”, in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679–698, 1986.

    Google Scholar 

  3. Doostparast Torshizi, A. and Fazel Zarandi, M. H., “Alpha-plane based automatic general type-2 fuzzy clustering based on simulated annealing meta-heuristic algorithm for analyzing gene expression data.,” Comput. Biol. Med., vol. 64, pp. 347–59, Sep. 2015.

    Google Scholar 

  4. Georghiades, A. S., Belhumeur, P. N., Kriegman, D. J., “From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 643-660, 2001.

    Google Scholar 

  5. Golsefid, S. M. M., Zarandi, F. and Turksen, I. B., “Multi-central general type-2 fuzzy clustering approach for pattern recognitions,” Inf. Sci. (Ny)., vol. 328, pp. 172–188, Jan. 2016.

    Google Scholar 

  6. Gonzalez, C. I., Melin, P., Castro, J. R., Mendoza, O. and Castillo O., “An improved sobel edge detection method based on generalized type-2 fuzzy logic”, Soft Computing, vol. 20, no. 2, pp. 773-784, 2014.

    Google Scholar 

  7. Gonzalez, R. C., Woods, R. E. and Eddins, S. L., “Digital Image Processing using Matlab,” in Prentice-Hall, 2004.

    Google Scholar 

  8. Hu, L., Cheng, H. D. and Zhang, M., “A high performance edge detector based on fuzzy inference rules,” Information Sciences, vol. 177, no. 21, pp. 4768–4784, Nov. 2007.

    Google Scholar 

  9. Kirsch, R., “Computer determination of the constituent structure of biological images,” Computers and Biomedical Research, vol. 4, pp. 315–328, 1971.

    Google Scholar 

  10. Lee, K. C., Ho, J. and Kriegman, D., “Acquiring Linear Subspaces for Face Recognition under Variable Lighting,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 5, pp. 684-698, 2005.

    Google Scholar 

  11. Liu, F., “An efficient centroid type-reduction strategy for general type-2 fuzzy logic system,” Information Sciences, vol. 178, no. 9, pp. 2224–2236, 2008.

    Google Scholar 

  12. Liu, X., Mendel, J. M. and Wu, D., “Study on enhanced Karnik–Mendel algorithms: Initialization explanations and computation improvements,” Information Sciences, vol. 184, no. 1, pp. 75–91, 2012.

    Google Scholar 

  13. Martínez, G. E., Mendoza, O., Castro, J. R., Melin, P. and Castillo, O., “Generalized type-2 fuzzy logic in response integration of modular neural networks,” IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), pp. 1331-1336, 2013.

    Google Scholar 

  14. Melin, P., Gonzalez, C. I., Castro, J. R., Mendoza, O. and Castillo O., “Edge-Detection Method for Image Processing Based on Generalized Type-2 Fuzzy Logic,” in IEEE Transactions on Fuzzy Systems, vol. 22, no. 6, pp. 1515-1525, 2014.

    Google Scholar 

  15. Mendel, J. M., “Comments on α -Plane Representation for Type-2 Fuzzy Sets: Theory and Applications,” in IEEE Transactions on Fuzzy Systems, vol.18, no.1, pp. 229-230, 2010.

    Google Scholar 

  16. Mendel, J. M., “General Type-2 Fuzzy Logic Systems Made Simple: A Tutorial,” in IEEE Transactions on Fuzzy Systems, vol. 22, no. 5, pp.1162-1182, 2014.

    Google Scholar 

  17. Mendel, J. M., “On KM Algorithms for Solving Type-2 Fuzzy Set Problems,” in IEEE Transactions on Fuzzy Systems, vol. 21, no. 3, pp. 426–446, 2013.

    Google Scholar 

  18. Mendel, J. M. and John, R. I. B., “Type-2 fuzzy sets made simple,” in IEEE Transactions on Fuzzy Systems, vol. 10,  no. 2, pp. 117–127,  2002.

    Google Scholar 

  19. Mendel, J. M., Liu, F. and Zhai, D., “α-Plane Representation for Type-2 Fuzzy Sets: Theory and Applications,” in IEEE Transactions on Fuzzy Systems, vol.17, no.5, pp. 1189-1207, 2009.

    Google Scholar 

  20. Mendoza, O., Melin, P. and Castillo, O., “An improved method for edge detection based on interval type-2 fuzzy logic,” Expert Systems with Applications, vol. 37, no. 12, pp. 8527–8535, Dec. 2010.

    Google Scholar 

  21. Mendoza, O., Melin, P. and Castillo, O., “Neural networks recognition rate as index to compare the performance of fuzzy edge detectors,” in Neural Networks (IJCNN), The 2010 International Joint Conference on, pp. 1–6,  2010.

    Google Scholar 

  22. Mendoza, O., Melin, P. and Licea, G., “A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral,” Information Sciences, vol. 179, no. 13, pp. 2078–2101, 2009.

    Google Scholar 

  23. Mendoza, O., Melin, P. and Licea, G., “A New Method for Edge Detection in Image Processing Using Interval Type-2 Fuzzy Logic,” 2007 IEEE International Conference on Granular Computing (GRC 2007), pp. 151–151, Nov. 2007.

    Google Scholar 

  24. Mendoza, O., Melin, P. and Licea, G., “Interval type-2 fuzzy logic for edges detection in digital images,” International Journal of Intelligent Systems (IJIS), vol. 24, no. 11, pp. 1115–1133, 2009.

    Google Scholar 

  25. Perez-Ornelas, F., Mendoza, O., Melin, P., Castro, J. R., Rodriguez-Diaz, A., “Fuzzy Index to Evaluate Edge Detection in Digital Images,” PLOS ONE, vol. 10, no. 6, pp. 1-19, 2015.

    Google Scholar 

  26. Phillips, P. J., Moon, H., Rizvi, S. A. and Rauss, P. J, “The FERET Evaluation Methodology for Face-Recognition Algorithms,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no.10, pp. 1090–1104, 2000.

    Google Scholar 

  27. Prewitt, J. M. S., “Object enhancement and extraction”,” B.S. Lipkin, A. Rosenfeld (Eds.), Picture Analysis and Psychopictorics, Academic Press, New York, NY, pp. 75–149, 1970.

    Google Scholar 

  28. Sanchez, M. A., Castillo, O. and Castro, J. R., “Generalized Type-2 Fuzzy Systems for controlling a mobile robot and a performance comparison with Interval Type-2 and Type-1 Fuzzy Systems,” Expert Syst. Appl., vol. 42, no. 14, pp. 5904–5914, Aug. 2015.

    Google Scholar 

  29. Sobel, I., “Camera Models and Perception”, Ph.D. thesis, Stanford University, Stanford, CA, 1970.

    Google Scholar 

  30. Talai, Z. and Talai, A., “A fast edge detection using fuzzy rules,” 2011 International Conference on Communications, Computing and Control Applications (CCCA), pp. 1–5, Mar. 2011.

    Google Scholar 

  31. Tao, C., Thompson, W. and Taur, J., “A fuzzy if-then approach to edge detection,” Fuzzy Systems, pp. 1356–1360, 1993.

    Google Scholar 

  32. The USC-SIPI Image Database. Available 00 http://www.sipi.usc.edu/database/.

  33. Wagner, C., Hagras, H., “Employing zSlices based general type-2 fuzzy sets to model multi level agreement”, 2011 IEEE Symposium on Advances in Type-2 Fuzzy Logic Systems (T2FUZZ), pp. 50–57, 2011.

    Google Scholar 

  34. Wagner, C., Hagras, H., “Toward general type-2 fuzzy logic systems based on zSlices”, in IEEE Transactions on Fuzzy Systems, vol. 18, no. 4, pp. 637–660, 2010.

    Google Scholar 

  35. Zadeh, L. A., Fuzzy Sets, vol. 8, Academic Press Inc., USA, 1965.

    Google Scholar 

  36. Zadeh, L. A., “Outline of a New Approach to the Analysis of Complex Systems and Decision Processes,” in IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-3, no. 1, pp. 28–44, 1973.

    Google Scholar 

  37. Zhai, D. and Mendel, J. M., “Centroid of a general type-2 fuzzy set computed by means of the centroid-flow algorithm,” Fuzzy Systems (FUZZ), 2010 IEEE International Conference on, pp. 1–8, 2010.

    Google Scholar 

  38. Zhai, D. and Mendel, J. M., “Uncertainty measures for general Type-2 fuzzy sets,” Information Sciences, vol. 181, no. 3, pp. 503–518,  2011.

    Google Scholar 

Download references

Acknowledgment

We thank the MyDCI program of the Division of Graduate Studies and Research, UABC, and the financial support provided by our sponsor CONACYT contract grant number: 44524.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gonzalez, C.I., Melin, P., Castro, J.R., Mendoza, O., Castillo, O. (2017). General Type-2 Fuzzy Edge Detection in the Preprocessing of a Face Recognition System. In: Melin, P., Castillo, O., Kacprzyk, J. (eds) Nature-Inspired Design of Hybrid Intelligent Systems. Studies in Computational Intelligence, vol 667. Springer, Cham. https://doi.org/10.1007/978-3-319-47054-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47054-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47053-5

  • Online ISBN: 978-3-319-47054-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics