[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Strong Convergence of Regularized New Proximal Point Algorithms

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider the regularization of two proximal point algorithms (PPA) with errors for a maximal monotone operator in a real Hilbert space, previously studied, respectively, by Xu, and by Boikanyo and Morosanu, where they assumed the zero set of the operator to be nonempty. We provide a counterexample showing an error in Xu’s theorem, and then we prove its correct extended version by giving a necessary and sufficient condition for the zero set of the operator to be nonempty and showing the strong convergence of the regularized scheme to a zero of the operator. This will give a first affirmative answer to the open question raised by Boikanyo and Morosanu concerning the design of a PPA, where the error sequence tends to zero and a parameter sequence remains bounded. Then, we investigate the second PPA with various new conditions on the parameter sequences and prove similar theorems as above, providing also a second affirmative answer to the open question of Boikanyo and Morosanu. Finally, we present some applications of our new convergence results to optimization and variational inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209–216 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  2. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baillon, J.B.: Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert. Comptes R. Acad. Sci. Paris, Sér. A B 280, A1511–A1514 (1975)

    MATH  Google Scholar 

  4. Borwein, J.M.: Fifty years of maximal monotonicity. Optim. Lett. 4, 473–490 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brézis, H.: Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland Mathematics Studies, vol. 5. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  6. Morosanu, G.: Nonlinear Evolution Equations and Applications. Reidel, Dordrecht (1988)

    MATH  Google Scholar 

  7. Pardalos, P.M., Rassias, T.M., Khan, A.A.: Nonlinear Analysis and Variational Problems, Springer Optimization and Its Applications, vol. 35. Springer, New York (2010)

    Google Scholar 

  8. Djafari Rouhani, B., Khatibzadeh, H.: On the proximal point algorithm. J. Optim. Theory Appl. 137, 411–417 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Djafari Rouhani, B.: Ergodic theorems for nonexpansive sequences in Hilbert spaces and related problems. Ph.D. Thesis, Yale University, part I, pp. 1–76 (1981)

  10. Djafari Rouhani, B.: Asymptotic behaviour of quasi-autonomous dissipative systems in Hilbert spaces. J. Math. Anal. Appl. 147, 465–476 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Djafari Rouhani, B.: Asymptotic behaviour of almost nonexpansive sequences in a Hilbert space. J. Math. Anal. Appl. 151, 226–235 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Djafari Rouhani, B., Moradi, S.: Strong convergence of two proximal point algorithms with possible unbounded error sequences. J. Optim. Theory Appl. 172, 222–235 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Song, Y., Yang, C.: A note on a paper “A regularization method for the proximal point algorithm”. J. Glob. Optim. 43, 171–174 (2009)

    Article  MATH  Google Scholar 

  14. Wang, F.: A note on the regularized proximal point algorithm. J. Glob. Optim. 50, 531–535 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yao, Y., Shahzad, N.: Strong convergence of a proximal point algorithm with general errors. Optim. Lett. 6, 621–628 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Xu, H.K.: A regularization method for the proximal point algorithm. J. Glob. Optim. 36, 115–125 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lehdili, N., Moudafi, A.: Combining the proximal algorithm and Tikhonov regularization. Optimization 37, 239–252 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Boikanyo, O.A., Morosanu, G.: A proximal point algorithm converging strongly for general errors. Optim. Lett. 4, 635–641 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Boikanyo, O.A., Morosanu, G.: Modified Rockafellar’s algorithm. Math. Sci. Res. J. 13, 101–122 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, Y., Wang, F., Xu, H.K.: Error sensitivity for strongly convergent modifications of the proximal point algorithm. J. Optim. Theory Appl. 168, 901–916 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cui, H., Ceng, L.: Convergence of over-relaxed contraction-proximal point algorithm in Hilbert spaces. Optimization 66, 793–809 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor and the referees for valuable suggestions leading to the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Djafari Rouhani.

Additional information

Communicated by Qamrul Hasan Ansari.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djafari Rouhani, B., Moradi, S. Strong Convergence of Regularized New Proximal Point Algorithms. J Optim Theory Appl 181, 864–882 (2019). https://doi.org/10.1007/s10957-019-01497-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01497-9

Keywords

Mathematics Subject Classification

Navigation