Abstract
NixZn1-xFe2O4 (x = 0.0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0) nanoferrites were synthesized using the citrate precursor method with high-purity metal nitrates and citric acid as synthesis precursors. For a detailed analysis of the structural, optical and magnetic properties of these nanoferrites sintered at 700 °C for 3 h, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM) tests were done. The analysis of XRD patterns of the powdered samples revealed that the nanoferrites have a spinel structure, and the crystallite size of the nanoferrites ranged from 23 to 31 nm. The nanoferrite samples were found with a maximum porosity of 57% at x = 0.5 which indicated the higher adsorption capacity of the materials. The density of these nanoferrites varied from 2.318 to 2.590 g/cm3 with the change in their crystallite size and lattice parameter. FTIR spectroscopy also revealed two prominent peaks between 542–582 and 402–415 cm−1, representing the tetrahedral and octahedral site occupancies, occupied by Ni2+, Zn2+ and Fe3+ ions. These peaks indicated the spinel structure of the nanoferrites. The magnetic behaviour of the nanoferrites was analysed from the hysteresis loop obtained from VSM data. It was observed that the nanoferrites are highly magnetic as the value of specific saturation magnetization varied from 1.31 to 63.31 emu/g with the variation in concentration of Ni2+ metal ions ranging from x = 0.0 to x = 1.0. High values of anisotropic constant were observed, which varied from 0.00147 \(\times\) 105 to 0.16218 \(\times\) 105 erg/g.
Similar content being viewed by others
References
Modak, S., Ammar, M., Mazaleyrat, F., Das, S., Chakrabarti, P.K.: XRD , HRTEM and magnetic properties of mixed spinel nanocrystalline Ni – Zn – Cu-ferrite. 473, 15–19 (2009). https://doi.org/10.1016/j.jallcom.2008.06.020
Su, H., Zhang, H., Tang, X., Jing, Y., Zhong, Z.: Complex permeability and permittivity spectra of polycrystalline Ni – Zn ferrite samples with different microstructures. 481, 841–844 (2009). https://doi.org/10.1016/j.jallcom.2009.03.133
Mathur, P., Thakur, A., Lee, J.H., Singh, M.: Sustained electromagnetic properties of Ni – Zn – Co nanoferrites for the high-frequency applications. Mater. Lett. 64, 2738–2741 (2010). https://doi.org/10.1016/j.matlet.2010.08.056
Taneja, S., Chahar, D., Thakur, P., Thakur, A.: Influence of bismuth doping on structural, electrical and dielectric properties of Ni–Zn nanoferrites. J. Alloys Compd. 859, 157760 (2021). https://doi.org/10.1016/j.jallcom.2020.157760
Raju, K., Venkataiah, G., Yoon, D.H.: Effect of Zn substitution on the structural and magnetic properties of Ni-Co ferrites. Ceram. Int. 40, 9337–9344 (2014). https://doi.org/10.1016/j.ceramint.2014.01.157
Venkataraju, C., Paulsingh, R.: FTIR and EPR studies of nickel substituted nanostructured Mn Zn ferrite. J. Nanosci. 2014, 1–5 (2014). https://doi.org/10.1155/2014/815385
Srinivasan, T.T., Ravindranathan, P., Cross, L.E., Roy, R., Newnham, R.E., Sankar, S.G., Patil, K.C.: Studies on high-density nickel zinc ferrite and its magnetic properties using novel hydrazine precursors. J. Appl. Phys. 63, 3789–3791 (1988). https://doi.org/10.1063/1.340615
Chella, S., Kollu, P., Komarala, E.V.P.R., Doshi, S., Saranya, M., Felix, S., Ramachandran, R., Saravanan, P., Koneru, V.L., Venugopal, V., Jeong, S.K., Grace, A.N.: Solvothermal synthesis of MnFe 2 O 4 -graphene composite-Investigation of its adsorption and antimicrobial properties. Appl. Surf. Sci. 327, 27–36 (2015). https://doi.org/10.1016/j.apsusc.2014.11.096
Herrera, G.: Domain wall dispersions : relaxation and resonance in Ni – Zn ferrite doped with V 2 O 3. 103901, 3–8 (2010). https://doi.org/10.1063/1.3506716
Reddy, D., Kumar, H., Yun, Y.S.: Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord. Chem. Rev. 315, 90–111 (2016). https://doi.org/10.1016/j.ccr.2016.01.012
Punia, P., Bharti, M.K., Chalia, S., Dhar, R., Ravelo, B., Thakur, P., Thakur, A.: Recent advances in synthesis, characterization, and applications of nanoparticles for contaminated water treatment- a review. Ceram. Int. 47, 1526–1550 (2021). https://doi.org/10.1016/j.ceramint.2020.09.050
Yuwei, C., Jianlong, W.: Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(II) removal. Chem. Eng. J. 168, 286–292 (2011). https://doi.org/10.1016/j.cej.2011.01.006
Rai, M., Ingle, A.: Role of nanotechnology in agriculture with special reference to management of insect pests. Appl. Microbiol. Biotechnol. 94, 287–293 (2012). https://doi.org/10.1007/s00253-012-3969-4
Sheikh, A., Jain, P.: Sci Forschen. a thorough study of zinc ferrite nanoparticles with reference to green synthesis. (2016)
Pathania, A., Thakur, P., Trukhanov, A.V., Trukhanov, S.V., Panina, L.V., Lüders, U., Thakur, A.: Development of tungsten doped Ni-Zn nano-ferrites with fast response and recovery time for hydrogen gas sensing application. Results Phys. 15, 102531 (2019). https://doi.org/10.1016/j.rinp.2019.102531
Chahar, D., Taneja, S., Bisht, S., Kesarwani, S., Thakur, P., Thakur, A., Sharma, P.B.: Photocatalytic activity of cobalt substituted zinc ferrite for the degradation of methylene blue dye under visible light irradiation. J. Alloys Compd. 851, 156878 (2021). https://doi.org/10.1016/j.jallcom.2020.156878
Sharma, P., Sharma, A., Sharma, M., Bhalla, N., Estrela, P., Jain, A., Thakur, P., Thakur, A.: Nanomaterial fungicides: in vitro and in vivo antimycotic activity of cobalt and nickel nanoferrites on phytopathogenic fungi. Glob. Challenges. 1, 1700041 (2017). https://doi.org/10.1002/gch2.201700041
Mathur,P., Thakur, A., Singh, M: Low temperature processing of Mn – Zn nanoferrites. Z. Phys. Chem.; 42, 8189–8192 (2007). https://doi.org/10.1007/s10853-007-1690-y
Thakur, A., Thakur, P., Hsu, J.: Structural, magnetic and electromagnetic characterization of In 3 + substituted Mn-Zn nanoferrites. 228, 663–672 (2014). https://doi.org/10.1515/zpch-2014-0477
Palacio Gómez, C.A., McCoy, J.J., Weber, M.H., Lynn, K.G.: Effect of Zn for Ni substitution on the properties of Nickel-Zinc ferrites as studied by low-energy implanted positrons, J. Magn. Magn. Mater. 481, 93–99 (2019). https://doi.org/10.1016/j.jmmm.2019.03.002
Lahouli, R., Massoudi, J., Smari, M., Rahmouni, H., Khirouni, K., Dhahri, E., Bessais, L.: Investigation of annealing effects on the physical properties of Ni0.6Zn0.4Fe1.5Al0.5O4 ferrite. RSC Adv. 9, 19949–19964 (2019). https://doi.org/10.1039/c9ra02238d
Javed, H., Iqbal, F., Agboola, P.O., Khan, M.A., Warsi, M.F., Shakir, I.: Structural, electrical and magnetic parameters evaluation of nanocrystalline rare earth Nd3+-substituted nickel-zinc spinel ferrite particles. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.02.176
Soka, M., Dosoudil, R., Degmova, J., Sla, J., Gruskova, A.: Journal of Magnetism and Magnetic Materials Magnetic properties of selected substituted spinel ferrites 326, 251–256 (2013). https://doi.org/10.1016/j.jmmm.2012.07.016
Cortés-hernández, D.A., Sánchez-fuentes, H.J., Reyes-rodríguez, P.Y., Elena, L., Escobedo-bocardo, J.C., Almanza-robles, J.M.: Journal of Magnetism and Magnetic Materials Synthesis , characterization and hemolysis studies of Zn ( 1 − x ) Ca x Fe 2 O 4 ferrites synthesized by sol-gel for hyperthermia treatment applications. J. Magn. Magn. Mater. 1–4 (2016). https://doi.org/10.1016/j.jmmm.2016.10.099
Venturini, J., Tonelli, A.M., Wermuth, T.B., Zampiva, Y.S., Arcaro, S., Da, A., Viegas, C., Pérez, C.: Excess of cations in the sol-gel synthesis of cobalt ferrite (CoFe2O4): a pathway to switching the inversion degree of spinels. J. Magn. Magn. Mater. (2019). https://doi.org/10.1016/j.jmmm.2019.03.057
Kurian, M., Nair, D.S.: Synthesis and characterization of nickel zinc ferrite 596, 594–596 (2011). https://doi.org/10.1063/1.3643621
Kurian, M., Nair, D.S.: Effect of preparation conditions on nickel zinc ferrite nanoparticles : a comparison between sol – gel auto combustion and co-precipitation methods. J. SAUDI Chem. Soc. (2013). https://doi.org/10.1016/j.jscs.2013.03.003
Hazra, S., Ghosh, N.N.: Preparation of nanoferrites and their applications. J. Nanosci. Nanotechnol. 14, 1983–2000 (2014). https://doi.org/10.1166/jnn.2014.8745
Kumar, S., Sharma, A., Singh, M., Sharma, S.P.: Simple synthesis and magnetic properties of nickel-zinc ferrites nanoparticles by using Aloe vera extract solution 5, 145–151 (2013)
Shahane, G.S., Kumar, A., Arora, M., Pant, R.P., Lal, K.: Journal of Magnetism and Magnetic Materials Synthesis and characterization of Ni – Zn ferrite nanoparticles. J. Magn. Magn. Mater. 322, 1015–1019 (2010). https://doi.org/10.1016/j.jmmm.2009.12.006
Almessiere, M.A., Slimani, Y., Güngüneş, H., Baykal, A., Trukhanov, S.V., Trukhanov, A.V.: Manganese/yttrium codoped strontium nanohexaferrites: evaluation of magnetic susceptibility and mossbauer spectra. Nanomaterials 9, 1–18 (2019). https://doi.org/10.3390/nano9010024
Puliová, P., Kováč, J., Voigt, A., Raschman, P.: Structure and magnetic properties of Co and Ni nano-ferrites prepared by a two step direct microemulsions synthesis. J. Magn. Magn. Mater. 341, 93–99 (2013). https://doi.org/10.1016/j.jmmm.2013.04.003
Sinha, M., Pradhan, S.K.: Synthesis of nanocrystalline Cd-Zn ferrite by ball milling and its stability at elevated temperatures. J. Alloys Compd. 489, 91–98 (2010). https://doi.org/10.1016/j.jallcom.2009.09.019
Paper, C.: Effect of diluents on the thermal behaviour of vinyl ester resins National Conference on Recent Advances in Innovative Materials. (2015)
Chand, P., Vaish, S., Kumar, P.: Structural, optical and dielectric properties of transition metal ( MFe 2 O 4; M = Co, Ni and Zn ) nanoferrites. Phys. B Phys. Condens. Matter. 524, 53–63 (2017). https://doi.org/10.1016/j.physb.2017.08.060
Dora, B.B., Kumar, S., Kotnala, R.K., Raulo, B.C., Sahu, M.C.: Improved magnetic properties of Ni-Zn nano ferrites by using Aloe vera extract solution 30, 294–298 (2015)
Ivaturi, K.V.: Synthesis and characterization of nano ferrites by citrate gel method. (2017)
Patil, B.B., Pawar, A.D., Bhosale, D.B., Ghodake, J.S., Thorat, J.B., Shinde, T.J.: Effect of La 3 + substitution on structural and magnetic parameters of Ni – Cu – Zn nano ‑ ferrites, J. Nanostructure Chem. 9, 129–138 (2019). https://doi.org/10.1007/s40097-019-0302-0
Kanna, R.R., Sakthipandi, K., Maraikkayar, S.S.M.A., Lenin, N., Sivabharathy, M.: Doping effect of rare-earth (lanthanum, neodymium and gadolinium) ions on structural, optical, dielectric and magnetic properties of copper nanoferrites. J. Rare Earths. 36, 1299–1309 (2018). https://doi.org/10.1016/j.jre.2018.03.033
Almessiere, M.A., Slimani, Y., Korkmaz, A.D., Baykal, A., Güngüneş, H., Sözeri, H., Shirsath, S.E., Güner, S., Akhtar, S., Manikandan, A.: Impact of La3+ and Y3+ ion substitutions on structural, magnetic and microwave properties of Ni0.3Cu0.3Zn0.4Fe2O4 nanospinel ferrites synthesized: via sonochemical route. RSC Adv. 9, 30671–30684 (2019). https://doi.org/10.1039/c9ra06353f
Thakur, A., Thakur, P., Hsu, J.: Enhancement in dielectric and magnetic properties of substituted Ni-Zn nano-ferrites by coprecipitation method 47, 4336–4339 (2011)
Thangjam, B., Soibam, I.: Comparative study of structural , electrical , and magnetic behaviour of Ni-Cu-Zn nanoferrites sintered by microwave and conventional techniques, 2017, (2017)
Cristina, A., F.M.C.Æ. Ma, R.H.G.A.: Kiminami, Microstructure and magnetic properties of Ni 1 – x Zn x Fe 2 O 4 synthesized by combustion reaction. 779–783 (2007). https://doi.org/10.1007/s10853-006-1440-6
Szczygieł, I., Winiarska, K.: Synthesis and characterization of manganese – zinc ferrite obtained by thermal decomposition from organic precursors. 471–477 (2014). https://doi.org/10.1007/s10973-013-3281-2
Assar, S.T., Abosheiasha, H.F.: Structure and magnetic properties of Co-Ni-Li ferrites synthesized by citrate precursor method. J. Magn. Magn. Mater. 324, 3846–3852 (2012). https://doi.org/10.1016/j.jmmm.2012.06.033
Rana, K., Thakur, P., Tomar, M., Gupta, V., Thakur, A.: Structural and magnetic properties of Ni-Zn doped BaM nanocomposite via citrate precursor 050152, 1–4 (2016). https://doi.org/10.1063/1.4947806
Ghodake, J.S., Kambale, R.C., Salvi, S. V., Sawant, S.R., Suryavanshi, S.S.: Electric properties of Co substituted Ni – Zn ferrites. 486, 830–834 (2009). https://doi.org/10.1016/j.jallcom.2009.07.075
Yusuf, Y., Syahidah Azis, R., Syazwan Mustaffa, M.: Spin-coating technique for fabricating nickel zinc nanoferrite (Ni0.3Zn0.7Fe2O4) thin films. Coatings Thin-Film Technol. (2019). https://doi.org/10.5772/intechopen.80461
Yan, W., Jiang, W., Zhang, Q., Li, Y., Wang, H.: Structure and magnetic properties of nickel-zinc ferrite microspheres synthesized by solvothermal method. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 171, 144–148 (2010). https://doi.org/10.1016/j.mseb.2010.03.088
Sertkol, M., Köseoǧlu, Y., Baykal, A., Kavas, H., Başaran, A.C.: Synthesis and magnetic characterization of Zno.6Ni o.4Fe204 nanoparticles via a polyethylene glycol-assisted hydrothermal route. J. Magn. Magn. Mater. 321, 157–162 (2009). https://doi.org/10.1016/j.jmmm.2008.08.083
Rao, B.P.: Synthesis and magnetic studies of Ni-Zn ferrite nanoparticles. (2006)
Kempter, C.P.: Vegard’s “law.” Phys. Status Solidi. 18, K117–K118 (1966). https://doi.org/10.1002/pssb.19660180251
Rani, R., Sharma, S.K., Pirota, K.R., Knobel, M., Thakur, S., Singh, M.: Effect of zinc concentration on the magnetic properties of cobalt-zinc nanoferrite. Ceram. Int. 38, 2389–2394 (2012). https://doi.org/10.1016/j.ceramint.2011.11.004
Sridhar, R., Ravinder D., Kumar, K.V: Synthesis and characterization of copper substitutednickel nano-ferrites by citrate-gel technique . Advances in Materials Physics and Chemistry 2, 192–199 (2012).
Munir, A., Ahmed, F., Saqib, M. Anis-ur-rehman, M: Electrical properties of Ni-Zn ferrite nanoparticles prepared by simplified sol-gel method. J. Superconductivity and Novel magnetism 28, 983-987 (2015). https://doi.org/10.1007/s10948-014-2737-3
Srivastava, A., Kumar, N., Misra, K.P., Khare, S.: Enhancement of band gap of ZnO nanocrystalline films at a faster rate using Sr dopant. Electron. Mater. Lett. 10, 703–711 (2014). https://doi.org/10.1007/s13391-014-3131-9
Murugesan, C., Chandrasekaran, G.: Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5, 73714–73725 (2015). https://doi.org/10.1039/c5ra14351a
Chavan, S.M., Babrekar, M.K., More, S.S., Jadhav, K.M.: Structural and optical properties of nanocrystalline Ni-Zn ferrite thin films. J. Alloys Compd. 507, 21–25 (2010). https://doi.org/10.1016/j.jallcom.2010.07.171
Massoudi, J., Smari, M., Nouri, K., Dhahri, E., Khirouni, K., Bertaina, S., Bessais, L., Hlil, E.K.: Magnetic and spectroscopic properties of Ni-Zn-Al ferrite spinel: from the nanoscale to microscale. RSC Adv. 10, 34556–34580 (2020). https://doi.org/10.1039/d0ra05522k
Jadhav, J., Biswas, S., Yadav, A.K., Jha, S.N., Bhattacharyya, D.: Structural and magnetic properties of nanocrystalline Ni[sbnd]Zn ferrites: In the context of cationic distribution. J. Alloys Compd. 696, 28–41 (2017). https://doi.org/10.1016/j.jallcom.2016.11.163
Hammad, T.M., Salem, J.K., Amsha, A.A., Hejazy, N.K.: Optical and magnetic characterizations of zinc substituted copper ferrite synthesized by a co-precipitation chemical method. J. Alloys Compd. 741, 123–130 (2018). https://doi.org/10.1016/j.jallcom.2018.01.123
Jebeli, M.S., Vaezi, M.R., Yousefi, A.A.: Chemical synthesis of nano-crystalline nickel-zinc ferrite as a magnetic pigment. Prog. Color Color. Coat. 3, 9–17 (2010)
Velmurugan, K., Sangli, V., Venkatachalapathy, K.: Synthesis of nickel zinc iron nanoparticles by coprecipitation technique 2. Experimental Procedure 13, 299–303 (2010)
Venkatesh, D., Vara Prasad, B.B.V.S., Ramesh, K.V., Ramesh, M.N.V.: Magnetic properties of Cu2+ substituted Ni–Zn nano-crystalline ferrites synthesized in citrate-gel route. J. Inorg. Organomet. Polym. Mater. 30, 2057–2066 (2020). https://doi.org/10.1007/s10904-019-01419-2
Manikandan, A., Judith Vijaya, J., Sundararajan, M., Meganathan, C., Kennedy, L.J., Bououdina, M.: Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method. Superlattices Microstruct. 64, 118–131 (2013). https://doi.org/10.1016/j.spmi.2013.09.021
Hossain, A.K.M.A., Seki, M., Kawai, T., Tabata, H.: Colossal magnetoresistance in spinel type Zn 1 − x Ni x Fe 2 O 4 Colossal magnetoresistance in spinel type Zn 1 À x Ni x Fe 2 O 4. 1273, 2012–2015 (2013). https://doi.org/10.1063/1.1762707
Saba, A.E., Elsayed, E.M., Moharam, M.M., Rashad, M.M.: Structure and magnetic properties of Ni x Zn 1 2 x Fe 2 O 4 thin films prepared through electrodeposition method. 3574–3582 (2011). https://doi.org/10.1007/s10853-011-5271-8
Valenzuela, R.: Novel applications of ferrites. Phys. Res. Int. 2012, (2012). https://doi.org/10.1155/2012/591839
Kumbhar, S.S., Mahadik, M.A., Mohite, V.S., Hunge, Y.M., Rajpure, K.Y., Bhosale, C.H.: Effect of Ni content on the structural, morphological and magnetic properties of spray deposited Ni-Zn ferrite thin films. Mater. Res. Bull. 67, 47–54 (2015). https://doi.org/10.1016/j.materresbull.2015.02.056
Budkuley, J.S.: Characterization and magnetic properties of nanoparticle Ni 1 − x Zn x Fe 2 O 4 ferrites prepared using microwave assisted combustion method. 1907–1911 (2012). https://doi.org/10.1007/s10948-012-1510-8
Hedaoo, P.S., Badwaik, D.S., Suryawanshi, S.M., Rewatkar, K.G.: ScienceDirect structural and magnetic studies of Zn doped nickel nanoferrites synthesize by sol-gel auto combustion method. Mater. Today Proc. 15, 416–423 (2019). https://doi.org/10.1016/j.matpr.2019.04.102
Pathania, A., Bhardwaj, S., Thakur, S.S., Mattei, J.: Investigation of structural, optical, magnetic and electrical properties of tungsten doped Ni-Zn nano-ferrites. Phys. B Phys. Condens. Matter. (2018). https://doi.org/10.1016/j.physb.2017.12.008
Jalili, H., Aslibeiki, B., Varzaneh, A.G., Chernenko, V.A.: The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles 4, 1348–1359 (2019). https://doi.org/10.3762/bjnano.10.133
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Punia, P., Dhar, R., Ravelo, B. et al. Microstructural, Optical and Magnetic Study of Ni–Zn Nanoferrites. J Supercond Nov Magn 34, 2131–2140 (2021). https://doi.org/10.1007/s10948-021-05967-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10948-021-05967-y