[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Microstructural, Optical and Magnetic Study of Ni–Zn Nanoferrites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

NixZn1-xFe2O4 (x = 0.0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0) nanoferrites were synthesized using the citrate precursor method with high-purity metal nitrates and citric acid as synthesis precursors. For a detailed analysis of the structural, optical and magnetic properties of these nanoferrites sintered at 700 °C for 3 h, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM) tests were done. The analysis of XRD patterns of the powdered samples revealed that the nanoferrites have a spinel structure, and the crystallite size of the nanoferrites ranged from 23 to 31 nm. The nanoferrite samples were found with a maximum porosity of 57% at x = 0.5 which indicated the higher adsorption capacity of the materials. The density of these nanoferrites varied from 2.318 to 2.590 g/cm3 with the change in their crystallite size and lattice parameter. FTIR spectroscopy also revealed two prominent peaks between 542–582 and 402–415 cm−1, representing the tetrahedral and octahedral site occupancies, occupied by Ni2+, Zn2+ and Fe3+ ions. These peaks indicated the spinel structure of the nanoferrites. The magnetic behaviour of the nanoferrites was analysed from the hysteresis loop obtained from VSM data. It was observed that the nanoferrites are highly magnetic as the value of specific saturation magnetization varied from 1.31 to 63.31 emu/g with the variation in concentration of Ni2+ metal ions ranging from x = 0.0 to x = 1.0. High values of anisotropic constant were observed, which varied from 0.00147 \(\times\) 105 to 0.16218 \(\times\) 105 erg/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Modak, S., Ammar, M., Mazaleyrat, F., Das, S., Chakrabarti, P.K.: XRD , HRTEM and magnetic properties of mixed spinel nanocrystalline Ni – Zn – Cu-ferrite. 473, 15–19 (2009). https://doi.org/10.1016/j.jallcom.2008.06.020

  2. Su, H., Zhang, H., Tang, X., Jing, Y., Zhong, Z.: Complex permeability and permittivity spectra of polycrystalline Ni – Zn ferrite samples with different microstructures. 481, 841–844 (2009). https://doi.org/10.1016/j.jallcom.2009.03.133

  3. Mathur, P., Thakur, A., Lee, J.H., Singh, M.: Sustained electromagnetic properties of Ni – Zn – Co nanoferrites for the high-frequency applications. Mater. Lett. 64, 2738–2741 (2010). https://doi.org/10.1016/j.matlet.2010.08.056

    Article  Google Scholar 

  4. Taneja, S., Chahar, D., Thakur, P., Thakur, A.: Influence of bismuth doping on structural, electrical and dielectric properties of Ni–Zn nanoferrites. J. Alloys Compd. 859, 157760 (2021). https://doi.org/10.1016/j.jallcom.2020.157760

    Article  Google Scholar 

  5. Raju, K., Venkataiah, G., Yoon, D.H.: Effect of Zn substitution on the structural and magnetic properties of Ni-Co ferrites. Ceram. Int. 40, 9337–9344 (2014). https://doi.org/10.1016/j.ceramint.2014.01.157

    Article  Google Scholar 

  6. Venkataraju, C., Paulsingh, R.: FTIR and EPR studies of nickel substituted nanostructured Mn Zn ferrite. J. Nanosci. 2014, 1–5 (2014). https://doi.org/10.1155/2014/815385

    Article  Google Scholar 

  7. Srinivasan, T.T., Ravindranathan, P., Cross, L.E., Roy, R., Newnham, R.E., Sankar, S.G., Patil, K.C.: Studies on high-density nickel zinc ferrite and its magnetic properties using novel hydrazine precursors. J. Appl. Phys. 63, 3789–3791 (1988). https://doi.org/10.1063/1.340615

    Article  ADS  Google Scholar 

  8. Chella, S., Kollu, P., Komarala, E.V.P.R., Doshi, S., Saranya, M., Felix, S., Ramachandran, R., Saravanan, P., Koneru, V.L., Venugopal, V., Jeong, S.K., Grace, A.N.: Solvothermal synthesis of MnFe 2 O 4 -graphene composite-Investigation of its adsorption and antimicrobial properties. Appl. Surf. Sci. 327, 27–36 (2015). https://doi.org/10.1016/j.apsusc.2014.11.096

    Article  ADS  Google Scholar 

  9. Herrera, G.: Domain wall dispersions : relaxation and resonance in Ni – Zn ferrite doped with V 2 O 3. 103901, 3–8 (2010). https://doi.org/10.1063/1.3506716

  10. Reddy, D., Kumar, H., Yun, Y.S.: Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord. Chem. Rev. 315, 90–111 (2016). https://doi.org/10.1016/j.ccr.2016.01.012

    Article  Google Scholar 

  11. Punia, P., Bharti, M.K., Chalia, S., Dhar, R., Ravelo, B., Thakur, P., Thakur, A.: Recent advances in synthesis, characterization, and applications of nanoparticles for contaminated water treatment- a review. Ceram. Int. 47, 1526–1550 (2021). https://doi.org/10.1016/j.ceramint.2020.09.050

    Article  Google Scholar 

  12. Yuwei, C., Jianlong, W.: Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(II) removal. Chem. Eng. J. 168, 286–292 (2011). https://doi.org/10.1016/j.cej.2011.01.006

    Article  Google Scholar 

  13. Rai, M., Ingle, A.: Role of nanotechnology in agriculture with special reference to management of insect pests. Appl. Microbiol. Biotechnol. 94, 287–293 (2012). https://doi.org/10.1007/s00253-012-3969-4

    Article  Google Scholar 

  14. Sheikh, A., Jain, P.: Sci Forschen. a thorough study of zinc ferrite nanoparticles with reference to green synthesis. (2016)

  15. Pathania, A., Thakur, P., Trukhanov, A.V., Trukhanov, S.V., Panina, L.V., Lüders, U., Thakur, A.: Development of tungsten doped Ni-Zn nano-ferrites with fast response and recovery time for hydrogen gas sensing application. Results Phys. 15, 102531 (2019). https://doi.org/10.1016/j.rinp.2019.102531

    Article  Google Scholar 

  16. Chahar, D., Taneja, S., Bisht, S., Kesarwani, S., Thakur, P., Thakur, A., Sharma, P.B.: Photocatalytic activity of cobalt substituted zinc ferrite for the degradation of methylene blue dye under visible light irradiation. J. Alloys Compd. 851, 156878 (2021). https://doi.org/10.1016/j.jallcom.2020.156878

    Article  Google Scholar 

  17. Sharma, P., Sharma, A., Sharma, M., Bhalla, N., Estrela, P., Jain, A., Thakur, P., Thakur, A.: Nanomaterial fungicides: in vitro and in vivo antimycotic activity of cobalt and nickel nanoferrites on phytopathogenic fungi. Glob. Challenges. 1, 1700041 (2017). https://doi.org/10.1002/gch2.201700041

    Article  Google Scholar 

  18. Mathur,P., Thakur, A., Singh, M: Low temperature processing of Mn – Zn nanoferrites. Z. Phys. Chem.; 42, 8189–8192 (2007). https://doi.org/10.1007/s10853-007-1690-y

  19. Thakur, A., Thakur, P., Hsu, J.: Structural, magnetic and electromagnetic characterization of In 3 + substituted Mn-Zn nanoferrites. 228, 663–672 (2014). https://doi.org/10.1515/zpch-2014-0477

  20. Palacio Gómez, C.A., McCoy, J.J., Weber, M.H., Lynn, K.G.: Effect of Zn for Ni substitution on the properties of Nickel-Zinc ferrites as studied by low-energy implanted positrons, J. Magn. Magn. Mater. 481, 93–99 (2019). https://doi.org/10.1016/j.jmmm.2019.03.002

  21. Lahouli, R., Massoudi, J., Smari, M., Rahmouni, H., Khirouni, K., Dhahri, E., Bessais, L.: Investigation of annealing effects on the physical properties of Ni0.6Zn0.4Fe1.5Al0.5O4 ferrite. RSC Adv. 9, 19949–19964 (2019). https://doi.org/10.1039/c9ra02238d

  22. Javed, H., Iqbal, F., Agboola, P.O., Khan, M.A., Warsi, M.F., Shakir, I.: Structural, electrical and magnetic parameters evaluation of nanocrystalline rare earth Nd3+-substituted nickel-zinc spinel ferrite particles. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.02.176

    Article  Google Scholar 

  23. Soka, M., Dosoudil, R., Degmova, J., Sla, J., Gruskova, A.: Journal of Magnetism and Magnetic Materials Magnetic properties of selected substituted spinel ferrites 326, 251–256 (2013). https://doi.org/10.1016/j.jmmm.2012.07.016

    Article  Google Scholar 

  24. Cortés-hernández, D.A., Sánchez-fuentes, H.J., Reyes-rodríguez, P.Y., Elena, L., Escobedo-bocardo, J.C., Almanza-robles, J.M.: Journal of Magnetism and Magnetic Materials Synthesis , characterization and hemolysis studies of Zn ( 1 − x ) Ca x Fe 2 O 4 ferrites synthesized by sol-gel for hyperthermia treatment applications. J. Magn. Magn. Mater. 1–4 (2016). https://doi.org/10.1016/j.jmmm.2016.10.099

  25. Venturini, J., Tonelli, A.M., Wermuth, T.B., Zampiva, Y.S., Arcaro, S., Da, A., Viegas, C., Pérez, C.: Excess of cations in the sol-gel synthesis of cobalt ferrite (CoFe2O4): a pathway to switching the inversion degree of spinels. J. Magn. Magn. Mater. (2019). https://doi.org/10.1016/j.jmmm.2019.03.057

    Article  Google Scholar 

  26. Kurian, M., Nair, D.S.: Synthesis and characterization of nickel zinc ferrite 596, 594–596 (2011). https://doi.org/10.1063/1.3643621

    Article  Google Scholar 

  27. Kurian, M., Nair, D.S.: Effect of preparation conditions on nickel zinc ferrite nanoparticles : a comparison between sol – gel auto combustion and co-precipitation methods. J. SAUDI Chem. Soc. (2013). https://doi.org/10.1016/j.jscs.2013.03.003

    Article  Google Scholar 

  28. Hazra, S., Ghosh, N.N.: Preparation of nanoferrites and their applications. J. Nanosci. Nanotechnol. 14, 1983–2000 (2014). https://doi.org/10.1166/jnn.2014.8745

    Article  Google Scholar 

  29. Kumar, S., Sharma, A., Singh, M., Sharma, S.P.: Simple synthesis and magnetic properties of nickel-zinc ferrites nanoparticles by using Aloe vera extract solution 5, 145–151 (2013)

    Google Scholar 

  30. Shahane, G.S., Kumar, A., Arora, M., Pant, R.P., Lal, K.: Journal of Magnetism and Magnetic Materials Synthesis and characterization of Ni – Zn ferrite nanoparticles. J. Magn. Magn. Mater. 322, 1015–1019 (2010). https://doi.org/10.1016/j.jmmm.2009.12.006

    Article  ADS  Google Scholar 

  31. Almessiere, M.A., Slimani, Y., Güngüneş, H., Baykal, A., Trukhanov, S.V., Trukhanov, A.V.: Manganese/yttrium codoped strontium nanohexaferrites: evaluation of magnetic susceptibility and mossbauer spectra. Nanomaterials 9, 1–18 (2019). https://doi.org/10.3390/nano9010024

    Article  Google Scholar 

  32. Puliová, P., Kováč, J., Voigt, A., Raschman, P.: Structure and magnetic properties of Co and Ni nano-ferrites prepared by a two step direct microemulsions synthesis. J. Magn. Magn. Mater. 341, 93–99 (2013). https://doi.org/10.1016/j.jmmm.2013.04.003

    Article  ADS  Google Scholar 

  33. Sinha, M., Pradhan, S.K.: Synthesis of nanocrystalline Cd-Zn ferrite by ball milling and its stability at elevated temperatures. J. Alloys Compd. 489, 91–98 (2010). https://doi.org/10.1016/j.jallcom.2009.09.019

    Article  Google Scholar 

  34. Paper, C.: Effect of diluents on the thermal behaviour of vinyl ester resins National Conference on Recent Advances in Innovative Materials. (2015)

  35. Chand, P., Vaish, S., Kumar, P.: Structural, optical and dielectric properties of transition metal ( MFe 2 O 4; M = Co, Ni and Zn ) nanoferrites. Phys. B Phys. Condens. Matter. 524, 53–63 (2017). https://doi.org/10.1016/j.physb.2017.08.060

    Article  ADS  Google Scholar 

  36. Dora, B.B., Kumar, S., Kotnala, R.K., Raulo, B.C., Sahu, M.C.: Improved magnetic properties of Ni-Zn nano ferrites by using Aloe vera extract solution 30, 294–298 (2015)

    Google Scholar 

  37. Ivaturi, K.V.: Synthesis and characterization of nano ferrites by citrate gel method. (2017)

  38. Patil, B.B., Pawar, A.D., Bhosale, D.B., Ghodake, J.S., Thorat, J.B., Shinde, T.J.: Effect of ­La 3 + substitution on structural and magnetic parameters of Ni – Cu – Zn nano ‑ ferrites, J. Nanostructure Chem. 9, 129–138 (2019). https://doi.org/10.1007/s40097-019-0302-0

  39. Kanna, R.R., Sakthipandi, K., Maraikkayar, S.S.M.A., Lenin, N., Sivabharathy, M.: Doping effect of rare-earth (lanthanum, neodymium and gadolinium) ions on structural, optical, dielectric and magnetic properties of copper nanoferrites. J. Rare Earths. 36, 1299–1309 (2018). https://doi.org/10.1016/j.jre.2018.03.033

  40. Almessiere, M.A., Slimani, Y., Korkmaz, A.D., Baykal, A., Güngüneş, H., Sözeri, H., Shirsath, S.E., Güner, S., Akhtar, S., Manikandan, A.: Impact of La3+ and Y3+ ion substitutions on structural, magnetic and microwave properties of Ni0.3Cu0.3Zn0.4Fe2O4 nanospinel ferrites synthesized: via sonochemical route. RSC Adv. 9, 30671–30684 (2019). https://doi.org/10.1039/c9ra06353f

  41. Thakur, A., Thakur, P., Hsu, J.: Enhancement in dielectric and magnetic properties of substituted Ni-Zn nano-ferrites by coprecipitation method 47, 4336–4339 (2011)

    Google Scholar 

  42. Thangjam, B., Soibam, I.: Comparative study of structural , electrical , and magnetic behaviour of Ni-Cu-Zn nanoferrites sintered by microwave and conventional techniques, 2017, (2017)

  43. Cristina, A., F.M.C.Æ. Ma, R.H.G.A.: Kiminami, Microstructure and magnetic properties of Ni 1 – x Zn x Fe 2 O 4 synthesized by combustion reaction. 779–783 (2007). https://doi.org/10.1007/s10853-006-1440-6

  44. Szczygieł, I., Winiarska, K.: Synthesis and characterization of manganese – zinc ferrite obtained by thermal decomposition from organic precursors. 471–477 (2014). https://doi.org/10.1007/s10973-013-3281-2

  45. Assar, S.T., Abosheiasha, H.F.: Structure and magnetic properties of Co-Ni-Li ferrites synthesized by citrate precursor method. J. Magn. Magn. Mater. 324, 3846–3852 (2012). https://doi.org/10.1016/j.jmmm.2012.06.033

    Article  ADS  Google Scholar 

  46. Rana, K., Thakur, P., Tomar, M., Gupta, V., Thakur, A.: Structural and magnetic properties of Ni-Zn doped BaM nanocomposite via citrate precursor 050152, 1–4 (2016). https://doi.org/10.1063/1.4947806

    Article  Google Scholar 

  47. Ghodake, J.S., Kambale, R.C., Salvi, S. V., Sawant, S.R., Suryavanshi, S.S.: Electric properties of Co substituted Ni – Zn ferrites. 486, 830–834 (2009). https://doi.org/10.1016/j.jallcom.2009.07.075

  48. Yusuf, Y., Syahidah Azis, R., Syazwan Mustaffa, M.: Spin-coating technique for fabricating nickel zinc nanoferrite (Ni0.3Zn0.7Fe2O4) thin films. Coatings Thin-Film Technol. (2019). https://doi.org/10.5772/intechopen.80461

  49. Yan, W., Jiang, W., Zhang, Q., Li, Y., Wang, H.: Structure and magnetic properties of nickel-zinc ferrite microspheres synthesized by solvothermal method. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 171, 144–148 (2010). https://doi.org/10.1016/j.mseb.2010.03.088

  50. Sertkol, M., Köseoǧlu, Y., Baykal, A., Kavas, H., Başaran, A.C.: Synthesis and magnetic characterization of Zno.6Ni o.4Fe204 nanoparticles via a polyethylene glycol-assisted hydrothermal route. J. Magn. Magn. Mater. 321, 157–162 (2009). https://doi.org/10.1016/j.jmmm.2008.08.083

  51. Rao, B.P.: Synthesis and magnetic studies of Ni-Zn ferrite nanoparticles. (2006)

  52. Kempter, C.P.: Vegard’s “law.” Phys. Status Solidi. 18, K117–K118 (1966). https://doi.org/10.1002/pssb.19660180251

    Article  ADS  Google Scholar 

  53. Rani, R., Sharma, S.K., Pirota, K.R., Knobel, M., Thakur, S., Singh, M.: Effect of zinc concentration on the magnetic properties of cobalt-zinc nanoferrite. Ceram. Int. 38, 2389–2394 (2012). https://doi.org/10.1016/j.ceramint.2011.11.004

    Article  Google Scholar 

  54. Sridhar, R., Ravinder D., Kumar, K.V: Synthesis and characterization of copper substitutednickel nano-ferrites by citrate-gel technique . Advances in Materials Physics and Chemistry 2, 192–199 (2012).

    Google Scholar 

  55. Munir, A., Ahmed, F., Saqib, M. Anis-ur-rehman, M: Electrical properties of Ni-Zn ferrite nanoparticles prepared by simplified sol-gel method. J. Superconductivity and Novel magnetism 28, 983-987 (2015). https://doi.org/10.1007/s10948-014-2737-3

  56. Srivastava, A., Kumar, N., Misra, K.P., Khare, S.: Enhancement of band gap of ZnO nanocrystalline films at a faster rate using Sr dopant. Electron. Mater. Lett. 10, 703–711 (2014). https://doi.org/10.1007/s13391-014-3131-9

    Article  ADS  Google Scholar 

  57. Murugesan, C., Chandrasekaran, G.: Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5, 73714–73725 (2015). https://doi.org/10.1039/c5ra14351a

    Article  ADS  Google Scholar 

  58. Chavan, S.M., Babrekar, M.K., More, S.S., Jadhav, K.M.: Structural and optical properties of nanocrystalline Ni-Zn ferrite thin films. J. Alloys Compd. 507, 21–25 (2010). https://doi.org/10.1016/j.jallcom.2010.07.171

    Article  Google Scholar 

  59. Massoudi, J., Smari, M., Nouri, K., Dhahri, E., Khirouni, K., Bertaina, S., Bessais, L., Hlil, E.K.: Magnetic and spectroscopic properties of Ni-Zn-Al ferrite spinel: from the nanoscale to microscale. RSC Adv. 10, 34556–34580 (2020). https://doi.org/10.1039/d0ra05522k

    Article  ADS  Google Scholar 

  60. Jadhav, J., Biswas, S., Yadav, A.K., Jha, S.N., Bhattacharyya, D.: Structural and magnetic properties of nanocrystalline Ni[sbnd]Zn ferrites: In the context of cationic distribution. J. Alloys Compd. 696, 28–41 (2017). https://doi.org/10.1016/j.jallcom.2016.11.163

    Article  Google Scholar 

  61. Hammad, T.M., Salem, J.K., Amsha, A.A., Hejazy, N.K.: Optical and magnetic characterizations of zinc substituted copper ferrite synthesized by a co-precipitation chemical method. J. Alloys Compd. 741, 123–130 (2018). https://doi.org/10.1016/j.jallcom.2018.01.123

    Article  Google Scholar 

  62. Jebeli, M.S., Vaezi, M.R., Yousefi, A.A.: Chemical synthesis of nano-crystalline nickel-zinc ferrite as a magnetic pigment. Prog. Color Color. Coat. 3, 9–17 (2010)

  63. Velmurugan, K., Sangli, V., Venkatachalapathy, K.: Synthesis of nickel zinc iron nanoparticles by coprecipitation technique 2. Experimental Procedure 13, 299–303 (2010)

    Google Scholar 

  64. Venkatesh, D., Vara Prasad, B.B.V.S., Ramesh, K.V., Ramesh, M.N.V.: Magnetic properties of Cu2+ substituted Ni–Zn nano-crystalline ferrites synthesized in citrate-gel route. J. Inorg. Organomet. Polym. Mater. 30, 2057–2066 (2020). https://doi.org/10.1007/s10904-019-01419-2

  65. Manikandan, A., Judith Vijaya, J., Sundararajan, M., Meganathan, C., Kennedy, L.J., Bououdina, M.: Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method. Superlattices Microstruct. 64, 118–131 (2013). https://doi.org/10.1016/j.spmi.2013.09.021

  66. Hossain, A.K.M.A., Seki, M., Kawai, T., Tabata, H.: Colossal magnetoresistance in spinel type Zn 1 − x Ni x Fe 2 O 4 Colossal magnetoresistance in spinel type Zn 1 À x Ni x Fe 2 O 4. 1273, 2012–2015 (2013). https://doi.org/10.1063/1.1762707

  67. Saba, A.E., Elsayed, E.M., Moharam, M.M., Rashad, M.M.: Structure and magnetic properties of Ni x Zn 1 2 x Fe 2 O 4 thin films prepared through electrodeposition method. 3574–3582 (2011). https://doi.org/10.1007/s10853-011-5271-8

  68. Valenzuela, R.: Novel applications of ferrites. Phys. Res. Int. 2012, (2012). https://doi.org/10.1155/2012/591839

  69. Kumbhar, S.S., Mahadik, M.A., Mohite, V.S., Hunge, Y.M., Rajpure, K.Y., Bhosale, C.H.: Effect of Ni content on the structural, morphological and magnetic properties of spray deposited Ni-Zn ferrite thin films. Mater. Res. Bull. 67, 47–54 (2015). https://doi.org/10.1016/j.materresbull.2015.02.056

    Article  Google Scholar 

  70. Budkuley, J.S.: Characterization and magnetic properties of nanoparticle Ni 1 − x Zn x Fe 2 O 4 ferrites prepared using microwave assisted combustion method. 1907–1911 (2012). https://doi.org/10.1007/s10948-012-1510-8

  71. Hedaoo, P.S., Badwaik, D.S., Suryawanshi, S.M., Rewatkar, K.G.: ScienceDirect structural and magnetic studies of Zn doped nickel nanoferrites synthesize by sol-gel auto combustion method. Mater. Today Proc. 15, 416–423 (2019). https://doi.org/10.1016/j.matpr.2019.04.102

    Article  Google Scholar 

  72. Pathania, A., Bhardwaj, S., Thakur, S.S., Mattei, J.: Investigation of structural, optical, magnetic and electrical properties of tungsten doped Ni-Zn nano-ferrites. Phys. B Phys. Condens. Matter. (2018). https://doi.org/10.1016/j.physb.2017.12.008

    Article  Google Scholar 

  73. Jalili, H., Aslibeiki, B., Varzaneh, A.G., Chernenko, V.A.: The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles 4, 1348–1359 (2019). https://doi.org/10.3762/bjnano.10.133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Thakur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Punia, P., Dhar, R., Ravelo, B. et al. Microstructural, Optical and Magnetic Study of Ni–Zn Nanoferrites. J Supercond Nov Magn 34, 2131–2140 (2021). https://doi.org/10.1007/s10948-021-05967-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05967-y

Keywords

Navigation