Abstract
The Nano-crystalline divalent copper ion substituted Ni–Zn ferrites having chemical formula Ni0.5Zn0.5−xCuxFe2O4 (where x = 0.05 to 0.25 in steps of 0.05) were prepared by citrate gel auto-combustion method. The X-ray diffraction study confirmed the single phase spinel cubic structure and the crystallographic studies indicate that the lattice parameter was observed to be decreased with increasing of Cu2+ concentration. Scanning Electron Microscopy was conducted to observe surface morphology and grain size/shape. Magnetic measurements were carried out using Vibrating Sample Magnetometer for magnetization and Impedance analyzer for permeability up to 15 MHz. Magnetization studies revealed that the incorporation of copper into the system modified the exchange interactions leading to gradual decrease in saturation magnetization. Highest saturation magnetization was observed for the base composition Ni0.5Zn0.5CuFe2O4 with 61 emu/g. There was an increase in coercivity and remanence with copper concentration. Frequency and temperature variation of inductance measurements were performed to understand the system behaviour at different threshold limits. Enhancement of initial permeability was observed up to the concentration x = 0.15 and its variation is observed to be grain size dependent. Temperature variation of permeability leads to Curie temperature, which was increased with increasing of Cu2+ concentration. All magnetic characteristics of the present system of nano crystalline ferrites displayed interesting deviations and reasons were well justified.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
S.N. Dolia, S. Chander, M.P. Sharma, S. Kumar, Super paramagnetic behaviour of nano-particles of Ni–Cu ferrite. Ind. J. Pure Appl. Phys. 44, 169–172 (2006)
X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, Room temperature preparation of nanocrystalline MnCuZn ferrite powder by auto-combustion of nitrate-citrate gels. Key Eng. Mater. 224, 593–596 (2002)
D.S.A. Selvan, S. Shobana, P. Thiruvasagam et al., Evaluation of antimicrobial and antidiabetic activities of Ag@SiO2 core-shell nanoparticles synthesized with diverse shell thicknesses. J. Clust. Sci. (2019). https://doi.org/10.1007/s10876-019-01682-w
S. Yuvaraj, A.C. Fernandez, M. Sundararajan, C.S. Dash, P. Sakthivel, Hydrothermal synthesis of ZnO–CdS nanocomposites: structural, optical and electrical behavior. Ceram. Int. 46(1), 391–402 (2019). https://doi.org/10.1016/j.ceramint.2019.08.274
M. Sundararajan, L.J. Kennedy, U. Aruldoss, S.K. Pasha, J.J. Vijaya, S. Dunn, Microwave combustion synthesis of zinc substituted nanocrystalline spinel cobalt ferrite: structural and magnetic studies. Mater. Sci. Semicond. Process. 40, 1–10 (2015)
M. Sundararajan, V. Sailaja, L.J. Kennedy, J.J. Vijaya, Photocatalytic degradation of rhodamine B under visible light using nanostructured zinc doped cobalt ferrite: kinetics and mechanism. Ceram. Int. 43(1), 540–548 (2017)
M. Sundararajan, L.J. Kennedy, J.J. Vijaya, Synthesis and characterization of cobalt substituted zinc ferrite nanoparticles by microwave combustion method. J. Nanosci. Nanotechnol. 15(9), 6719–6728 (2015)
M. Sundararajan, L.J. Kennedy, J.J. Vijaya, U. Aruldoss, Microwave combustion synthesis of Co1−xZnxFe2O4 (0≤x≤0.5): structural, magnetic, optical and vibrational spectroscopic studies. Spectrochim. Acta Part A 140, 421–430 (2015)
A. Manikandan, J.J. Vijaya, M. Sundararajan, C. Meganathan, L.J. Kennedy, M. Bououdina, Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method. Superlattices Microstruct. 64, 118–131 (2013)
T. Nakamura, Low-temperature sintering of Ni–Zn–Cu ferrite and its permeability spectra. J. Magn. Magn. Mater. 168, 285 (1997)
X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, Effect of Mn substitution on the magnetic properties of MgCuZn ferrites. J. Magn. Magn. Mater. 251, 316–322 (2002)
H. Su, H.W. Zhang, X.L. Tang, L.J. Jia, Q.Y. Wen, Sintering characteristics and magnetic properties of NiCuZn ferrites for MLCI applications. Mater. Sci. Eng. B 129, 172–175 (2006)
Y. Li, J.P. Zhao, J.C. Han, X.D. He, Combustion synthesis and characterization of NiCuZn ferrite powders. Mater. Res. Bull. 40, 981–989 (2005)
Q.J. Han, D.H. Ji, G.D. Tang, Z.Z. Li, X. Hou, W.H. Qi, S.R. Liu, R.R. Bian, Estimating the cation distributions in the spinel ferrites Cu0.5−xNi0.5ZnxFe2O4 (0.0≤x≤0.5). J. Magn. Magn. Mater. 324, 1975–1981 (2012)
Z.X. Yue, L.T. Li, J. Zhou, H.G. Zhang, Z.L. Gui, Preparation and characterization of NiCuZn ferrite nanocrystalline powders by auto-combustion of nitrate–citrate gels. Mater. Sci. Eng. B 64, 68–72 (1999)
M.P. Reddy, G. Balakrishnaiah, W. Madhuri, M.V. Ramana, N.R. Reddy, K.S. Kumar, V.R. Murthy, R.R. Reddy, Structural, magnetic and electrical properties of NiCuZn ferrites prepared by microwave sintering method suitable for MLCI applications. J. Phys. Chem. Solids 71, 1373–1380 (2010)
J.Y. Hsu, W.S. Ko, C.J. Chen, The effect of V2O5 on the sintering of NiCuZn ferrite. IEEE Trans. Magn. 31, 3994–3996 (1995)
J.J. Shrotri, A.D. Kulkarni, C.E. Deshpande, A. Mitra, S.R. Sainkar, P.S. Anil Kumar, S.K. Date, Effect of Cu substitution on the magnetic and electrical properties of Ni–Zn ferrite synthesised by soft chemical method. Mater. Chem. Phys. 59, 1–5 (1999)
O.F. Caltun, L. Spinub, A.L. Stancua, L.D. Thungb, W. Zhou, Study of the microstructure and of the permeability spectra of NiZnCu ferrites. J. Magn. Magn. Mater. 242, 160 (2002)
S. Bid, S.K. Pardhan, Characterization of crystalline structure of ball-milled nano-Ni–Zn-ferrite by Rietveld method. Mater. Chem. Phys. 84, 291–301 (2004)
Z. Yue, J. Zhou, L. Li, H. Zhang, Z. Gui, Synthesis of nanocrystalline NiCuZn ferrite powders by sol–gel auto-combustion method. J. Magn. Magn. Mater. 208, 55–60 (2000)
I.H. Gul, W. Ahmed, A. Maqsood, Electrical and magnetic characterization of nanocrystalline Ni–Zn ferrite synthesis by co-precipitation route. J. Magn. Magn. Mater. 320, 270–275 (2008)
D. Venkatesh, M.S.R. Prasad, B.R. Babu, K.V. Ramesh, K. Trinath, Effect of sintering temperature on the micro strain and magnetic properties of Ni–Zn nanoferrites. J. Magn. 20(3), 229–240 (2015)
B.V. Prasad, K.V. Ramesh, A. Srinivas, Structural and magnetic studies on Co–Zn nanoferrite synthesized via sol–gel and combustion methods. Mater. Sci. 37(1), 39–54 (2019)
M.P. Reddy, W. Madhuri, G. Balakrishnaiah, M.V. Ramana, N.R. Reddy, K.S. Kumar, V.R. Murthy, R.R. Reddy, Microwave sintering of iron deficient Ni–Cu–Zn ferrites for multilayer chip inductors. Curr. Appl. Phys. 11, 191–198 (2011)
Sundararajan M, Kennedy LJ (2017) Photocatalytic removal of rhodamine B under irradiation of visible light using Co1−xCuxFe2O4 (0≤x≤0.5) nanoparticles. J. Environ. Chem. Eng. 5(4), 4075–4092.
Hossain AA, Rahman ML (2011) Enhancement of microstructure and initial permeability due to Cu substitution in Ni0.50− xCuxZn0.50Fe2O4 ferrites. J. Magn. Magn. Mater. 323(15), 1954–1962.
D. Venkatesh, G. Himavathi, K.V. Ramesh, Structural, magnetic, and electrical properties of Ni0.65Zn0.35−xCuxFe2O4 Nanoferrite System. J. Supercond. Nov. Magn. 28, 2801–2807 (2015)
D. Venkatesh, K.V. Ramesh, Structural and electrical properties of Cu-doped Ni-Znnanocrystalline ferrites for MLCI applications. Mod. Phys. Lett. B 31(33), 1750318 (2017)
M. Sundararajan, L.J. Kennedy, P. Nithya, J.J. Vijaya, M. Bououdina, Visible light driven photocatalytic degradation of rhodamine B using Mg doped cobalt ferrite spinel nanoparticles synthesized by microwave combustion method. J. Phys. Chem. Solids 108, 61–75 (2017)
B.D. Cullity, Elements of X-ray diffraction, 2nd edn. (Addision-Wesley Publishing Company, USA, 1978)
M.S.R. Prasad, B.R. Babu, K.V. Ramesh, K. Trinath, Structural and magnetic studies on chromium substituted Ni–Zn nano ferrite synthesized by citrate gel auto combustion method. J. Supercond. Nov. Magn. 27, 2735–2745 (2014)
B.R. Babu, M.S.R. Prasad, K.V. Ramesh, Y. Purushotham, Structural and magnetic properties of Ni0.5Zn0.5AlxFe2−xO4 nano ferrite system. Mater. Chem. Phys. 148, 585–591 (2014)
L. Vegard, Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Phys. 5, 17–26 (1921)
E.V. Gopalan, K.A. Malini, S. Saravanan, D.S. Kumar, Y. Yoshida, M.R. Anantharaman, Evidence for polaron conduction in nanostructured manganese ferrite. J. Phys. D Appl. Phys. 41, 185005 (2008)
E.W. Gorter, Philips Res. 9, 427 (1954)
L. Néel, C.R. Acad, Sci. Paris. 230, 375 (1950)
A.H. Morrospm, K. Haneda, Magnetic structure of small NiFe2O4 particles. J. Appl. Phys. 52, 2496 (1981)
J. Smit, H.P.J. Wijn, Ferrites (PhilipsTechnical Library, Eindhovan, 1959)
Y. Yafet, C. Kittel, Antiferromagnetic arrangements in ferrites. Phys. Rev. 87, 290 (1952)
X.Q. Shen, J. Xiang, F.Z. Song, M.Q. Liu, Characterization and magnetic properties of electrospun Co1−xZnxFe2O4 nanofibers. Appl. Phys. A 99, 189–195 (2010)
Q. Yu, Y. Su, R. Tursuna, J. Zhang, Synthesis and characterization of low density porous nickel zinc ferrites. RSC Adv. 9, 13173 (2019)
A. Globus, P. Duplex, Effective anisotropy in polycrystalline materials. Separation of Components. J. Appl. Phys. 39, 727 (1968)
S.A. Ghodake, U.R. Ghodake, S.R. Sawant, S.S. Suryavanshi, P.P. Bakare, Magnetic properties of NiCuZn ferrites synthesized by oxalate precursor method. J. Magn. Magn. Mater. 305, 110–119 (2006)
Acknowledgements
The authors are thankful to University Grants Commission, India, for providing financial assistance through UGC Major Research Project F. No. 42–824/2013 (SR) Dt. 22–03-2013.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Venkatesh, D., Vara Prasad, B.B.V.S., Ramesh, K.V. et al. Magnetic Properties of Cu2+ Substituted Ni–Zn Nano-Crystalline Ferrites Synthesized in Citrate-Gel Route. J Inorg Organomet Polym 30, 2057–2066 (2020). https://doi.org/10.1007/s10904-019-01419-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10904-019-01419-2