[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Electrical Properties of Ni-Zn Ferrite Nanoparticles Prepared by Simplified Sol-Gel Method

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Ferrites have become the source of attention for scientists due to their variety of physical properties. Their massive use in the electronics industry has made the study of their dielectric, thermal, and optical properties unavoidable. These materials have potential applications in high-frequency devices. The empirical formula for the synthesized nanoparticles is given by Ni0.5Zn0.5Fe2O4. Nanoferrites were prepared by a simplified sol-gel method. The crystalline phase; crystallite size; surface morphology; dielectric properties such as AC conductivity (σ AC), dielectric constant \((\epsilon ^{\prime })\), and dielectric loss (tan δ) as a function of frequency at different temperatures; and DC electrical resistivity as a function of temperature were studied. The Ni-Zn nanoferrite was sintered at 550 C. The X-ray diffraction (XRD) results showed a spinel cubic structure having a lattice constant a=8.383 Å and crystallite size of 12 nm for the (311) peak after sintering. Scanning electron microscopy showed the particle morphology of the samples. AC conductivity (σ AC) increases with frequency as well as the temperature. DC resistivity decreased with increase in temperature. The observed behavior could be explained by the Maxwell-Wagner model. Parameters observed were correlated to understand the conduction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Harris, V.G., Geiler, A., Chen, Y.J., Yoon, S.D., Wu, M.Z., Yang, A., Chen, Z.H., He, P., Parimi, P.V., Zuo, X., Patton, C.E., Abe, M., Acher, O., Vittoria, C.: J. Magn. Magn. Mater. 321, 2035 (2009)

    Article  ADS  Google Scholar 

  2. Adam, J.D., Davis, L.E., Dionne, G.F., Schloemann, E.F., Stitzer, S.N.: IEEE Trans. Microwave Theory Tech. 50, 721 (2002)

    Article  ADS  Google Scholar 

  3. Pervaiz, E., Gul, I.H., Magn, J.: Magn. Mater. 349, 27 (2014)

    Article  ADS  Google Scholar 

  4. Sanchez, R.D., Rivas, J., Vaqueiro, P., Lopez-Quintea, M.A., Caeiro, D.: J. Magn. Magn. Mater. 247, 92 (2002)

    Article  ADS  Google Scholar 

  5. Taketomi, S., Ozaki, Y., Kawasaki, K., Yuasa, S., Miyajima, H.: J. Magn. Magn. Mater 122, 6–9 (1993)

    Article  ADS  Google Scholar 

  6. Mergen, A., Qureshi, A.: J. Alloys Compd. 478, 741 (2009)

    Article  Google Scholar 

  7. Vaqueiro, P., Lopez-Quintela, M.A., Rivas, J., Greneche, J.M.: J. Magn. Magn. Mater. 169, 56 (1997)

    Article  ADS  Google Scholar 

  8. Harris, V.G., Geiler, A., Chen, Y.J., Yoon, S.D., Wu, M.Z., Yang, A., Chen, Z.H., He, P., Parimi, P.V., Zuo, X., Patton, C.E., Abe, M., Acher, O., Vittoria, C.: J. Magn. Magn. Mater. 321, 2035 (2009)

    Article  ADS  Google Scholar 

  9. Daliya, S.M., Ruey-Shin, J.: Chem. Eng. J. 129, 51 (2007)

    Article  Google Scholar 

  10. Nasir, S., Anis-ur-Rehman, M.: Phys. Scr. 84, 025603 (2011)

    Article  ADS  Google Scholar 

  11. Jacob, B.P., Thankachan, S., Xavier, S., Mohammed, E.M.: J. Alloys Compd. 578, 314 (2013)

    Article  Google Scholar 

  12. Ungar, T.: Scripta Mater 51, 777 (2004)

    Article  Google Scholar 

  13. George, M., Nair, S.S., John, A.M., Joy, P.A., Anantharaman, M.R.: J. Phys. D: Appl. Phys. 39, 900 (2006)

    Article  ADS  Google Scholar 

  14. Shinde, T.J., Gadkari, A.B., Vasambekar, P.N.: Mater. Chem. Phys. 111, 87 (2008)

    Article  Google Scholar 

  15. Rao, B.P., Caltun, O., Cho, W.S., Kim, C.O., Kim, C.G.: J. Magn. Magn. Mater. 310, 812 (2007)

    Article  ADS  Google Scholar 

  16. Balaji, S., Selvan, R.K., Berchmans, L.J., Angappan, S., Subramanian, K., Augustin Mater, C.O.: Sci. Eng. B 119, 119 (2005)

    Article  Google Scholar 

  17. Gul, I.H., Amin, F., Abbasi, A.Z., Anis-ur-Rehman, M., Maqsood, A.: Scr. Mater. 56, 497 (2007)

    Article  Google Scholar 

  18. Hamon, B.V.: Aust. J. Chem. 6, 304 (1953)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The financial assistance of the Higher Education Commission, Pakistan, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Anis-ur-Rehman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munir, A., Ahmed, F., Saqib, M. et al. Electrical Properties of Ni-Zn Ferrite Nanoparticles Prepared by Simplified Sol-Gel Method. J Supercond Nov Magn 28, 983–987 (2015). https://doi.org/10.1007/s10948-014-2737-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2737-3

Keywords